Patents by Inventor José Manuel López Nieto

José Manuel López Nieto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11839867
    Abstract: The present invention relates to a method for producing mixtures of hydrocarbons and aromatic compounds, for use as fuel components (preferably in the range C5-C16), by means of catalytic conversion of the oxygenated organic compounds contained in aqueous fractions derived from biomass treatments, wherein said method can comprise at least the following steps: (i) bringing the aqueous mixture containing the oxygenated organic compounds derived from biomass in contact with a catalyst comprising at least Sn and Nb, Sn and Ti, and combinations of Sn, Ti and Nb; (ii) reacting the mixture with the catalyst in a catalytic reactor at temperatures between 100 and 350° C. and under pressures from 1 to 80 bar in the absence of hydrogen; and (iii) recovering the products obtained by means of the liquid/liquid separation of the aqueous and organic phases.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: December 12, 2023
    Assignees: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS, UNIVERSITAT POLITECNICA DE VALENCIA
    Inventors: Marcelo Eduardo Domine, Alberto Fernández-Arroyo Naranjo, José Manuel López Nieto
  • Publication number: 20210379564
    Abstract: The present invention relates to a method for producing mixtures of hydrocarbons and aromatic compounds, for use as fuel components (preferably in the range C5-C16), by means of catalytic conversion of the oxygenated organic compounds contained in aqueous fractions derived from biomass treatments, wherein said method can comprise at least the following steps: (i) bringing the aqueous mixture containing the oxygenated organic compounds derived from biomass in contact with a catalyst comprising at least Sn and Nb, Sn and Ti, and combinations of Sn, Ti and Nb; (ii) reacting the mixture with the catalyst in a catalytic reactor at temperatures between 100 and 350° C. and under pressures from 1 to 80 bar in the absence of hydrogen; and (iii) recovering the products obtained by means of the liquid/liquid separation of the aqueous and organic phases.
    Type: Application
    Filed: May 23, 2019
    Publication date: December 9, 2021
    Inventors: Marcelo Eduardo DOMINE, Alberto FERNÁNDEZ-ARROYO NARANJO, José Manuel LÓPEZ NIETO
  • Patent number: 10876049
    Abstract: The present invention relates to a method for producing mixtures of hydrocarbons and aromatic compounds for subsequent use as fuel components (preferably in the C5-C16 range) by catalytic conversion of the oxygenated compounds contained in aqueous fractions derived from primary biomass treatments, which can comprise at least the following steps: (i) bringing the aqueous mixture containing the oxygenated compounds derived from biomass in contact with a catalyst comprising at least W and/or Nb, and combinations of Nb and W with other elements, (ii) reacting the mixture with the catalyst in a catalytic reactor at temperatures between 50° C. and 450° C. and under pressures of 1 to 120 bar; and (iii) recovering the products obtained by a liquid/liquid separation process of the aqueous and organic phases.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: December 29, 2020
    Assignees: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC), UNIVERSITAT POLITECNICA DE VALENCIA
    Inventors: Marcelo Eduardo Domine, Jose Manuel Lopez Nieto, Daniel Delgado Munoz, Alberto Fernandez-Arroyo Naranjo
  • Publication number: 20190367816
    Abstract: The present invention relates to a method for producing mixtures of hydrocarbons and aromatic compounds for subsequent use as fuel components (preferably in the C5-C16 range) by catalytic conversion of the oxygenated compounds contained in aqueous fractions derived from primary biomass treatments, which can comprise at least the following steps: (i) bringing the aqueous mixture containing the oxygenated compounds derived from biomass in contact with a catalyst comprising at least W and/or Nb, and combinations of Nb and W with other elements, (ii) reacting the mixture with the catalyst in a catalytic reactor at temperatures between 50° C. and 450° C. and under pressures of 1 to 120 bar; and (iii) recovering the products obtained by a liquid/liquid separation process of the aqueous and organic phases.
    Type: Application
    Filed: March 22, 2017
    Publication date: December 5, 2019
    Inventors: Marcelo Eduardo DOMINE, Jose Manuel LOPEZ NIETO, Daniel DELGADO MUNOZ, Alberto FERNANDEZ-ARROYO NARANJO
  • Patent number: 10058850
    Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: August 28, 2018
    Assignees: INSTITUTO MEXICANO DEL PETROLEO, PEMEX PETROQUIMICA, UNIVERSIDAD POLITECHNICA DE VALENCIA
    Inventors: Jaime Sanchez Valente, Jose Manuel Lopez Nieto, Hector Armendariz Herrera, Amada Masso Ramirez, Francisco Ivars Barcelo, Maria de Lourdes Alejandra Guzman Castillo, Roberto Quintana Solorzano, Andrea Rodriguez Hernandez, Paz Del Angel Vicente, Etel Maya Flores
  • Patent number: 9937486
    Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: April 10, 2018
    Assignees: Instituto Mexicano del Petroleo, Pemex Petroquimica, Universidad Politecnica de Valencia
    Inventors: Jaime Sanchez Valente, Jose Manuel Lopez Nieto, Hector Armendariz Herrera, Amada Masso Ramirez, Francisco Ivars Barcelo, Maria de Lourdes Alejandra Guzman Castillo, Roberto Quintana Solorzano, Andrea Rodriguez Hernandez, Paz Del Angel Vicente, Etel Maya Flores
  • Patent number: 9409156
    Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: August 9, 2016
    Assignees: Instituto Mexicano Del Petroleo, Pemex Petroquimica, Universidad Politecnica De Valencia
    Inventors: Jaime Sanchez Valente, Jose Manuel Lopez Nieto, Hector Armendariz Herrera, Amada Masso Ramirez, Francisco Ivars Barcelo, Maria de Lourdes Alejandra Guzman Castillo, Roberto Quintana Solorzano, Andrea Rodriguez Hernandez, Paz Del Angel Vicente, Etel Maya Flores
  • Patent number: 9321038
    Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: April 26, 2016
    Assignees: Instituto Mexicano Del Petroleo, Pemex Petroquimica, Universidad Politecnica De Valencia
    Inventors: Jaime Sanchez Valente, Jose Manuel Lopez Nieto, Hector Armendariz Herrera, Amada Masso Ramirez, Francisco Ivars Barcelo, Maria de Lourdes Alejandra Guzman Castillo, Roberto Quintana Solorzano, Andrea Rodriguez Hernandez, Paz Del Angel Vicente, Etel Maya Flores
  • Publication number: 20150151280
    Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 4, 2015
    Inventors: Jaime SANCHEZ VALENTE, Jose Manuel LOPEZ NIETO, Hector ARMENDARIZ HERRERA, Amada MASSO RAMIREZ, Francisco IVARS BARCELO, Maria de Lourdes Alejandra GUZMAN CASTILLO, Roberto QUINTANA SOLORZANO, Andrea RODRIGUEZ HERNANDEZ, Paz DEL ANGEL VICENTE, Etel MAYA FLORES
  • Publication number: 20150112109
    Abstract: A layered multimetallic mixed oxide (LMMO) is characterized by one or more diffraction peaks at 5<2?<15, preferably between 10<2?<15. The catalysts can be represented by the general formula: M1 M2 M3 O? wherein M1 is selected from the group of Ag, Au, Zn, Sn, Rh, Pd, Pt, Cu, Ni, Fe, Co, an alkaline metal, an alkaline earth metal, a rare earth metal, or mixtures thereof. M2 is selected from the group of Ti, Hf, Zr, Sn, Bi, Sb, V, Nb, Ta and P, or mixtures thereof. M3 is selected from the group of Mo, W and Cr, or mixtures thereof. ? depends on the amount and oxidation state or valence of the other components, also it depends on the starting materials, preparation method and the activation process, and where the catalyst exhibits at least one X-ray diffraction peak between 5<2?<15.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 23, 2015
    Inventors: Jaime SANCHEZ VALENTE, Enelio TORRES GARCIA, Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Andrea RODRIGUEZ HERNANDEZ, Roberto QUINTANA SOLORZANO, Maiby VALLE ORTA, Jose Manuel LOPEZ NIETO
  • Publication number: 20150086471
    Abstract: A layered multimetallic oxide catalyst having the formula M1 M2 M3 O? wherein: M1 is selected from the group of Ag, Au, Zn, Sn, Rh, Pd, Pt, Cu, Ni, Fe, Co, an alkaline metal, an alkaline earth metal, a rare earth metal, and mixtures thereof; M2 is selected from the group of Ti, Hf, Zr, Sn, Bi, Sb, V, Nb, Ta and P, and mixtures thereof; M3 is selected from the group of Mo, W and Cr, and mixtures thereof; and where said multilayered metallic oxide exhibits a major X-ray diffraction peak between 5<2?<15, is prepared by a process of mixing metallic precursors of M1, M2 and M3 to form a precursor mixture, hydrothermal treatment of the resulting mixture to obtain a homogeneous solid mixture, and thermally treating the solid mixture to activate the solid mixture and obtain said catalyst.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Inventors: Jaime SANCHEZ VALENTE, Enelio TORRES GARCIA, Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Andrea RODRIGUEZ HERNANDEZ, Roberto QUINTANA SOLORZANO, Maiby VALLE ORTA, Jose Manuel LOPEZ NIETO
  • Publication number: 20150087505
    Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.
    Type: Application
    Filed: December 8, 2014
    Publication date: March 26, 2015
    Inventors: Jaime SANCHEZ VALENTE, Jose Manuel LOPEZ NIETO, Hector ARMENDARIZ HERRERA, Amada MASSO RAMIREZ, Francisco IVARS BARCELO, Maria de Lourdes Alejandra GUZMAN CASTILLO, Roberto QUINTANA SOLORZANO, Andrea RODRIGUEZ HERNANDEZ, Paz DEL ANGEL VICENTE, Etel MAYA FLORES
  • Publication number: 20140275685
    Abstract: A layered multimetallic mixed oxide (LMMO) is characterized by one or more diffraction peaks at 5<2?<15, preferably between 10<2?<15. The catalysts can be represented by the general formula: M1M2M3O? wherein M1 is selected from the group of Ag, Au, Zn, Sn, Rh, Pd, Pt, Cu, Ni, Fe, Co, an alkaline metal, an alkaline earth metal, a rare earth metal, or mixtures thereof. M2 is selected from the group of Ti, Hf, Zr, Sn, Bi, Sb, V, Nb, Ta and P, or mixtures thereof. M3 is selected from the group of Mo, W and Cr, or mixtures thereof. ? depends on the amount and oxidation state or valence of the other components, also it depends on the starting materials, preparation method and the activation process, and where the catalyst exhibits at least one X-ray diffraction peak between 5<2?<15.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Jaime SANCHEZ VALENTE, Enelio TORRES GARCIA, Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Andrea RODRIGUEZ HERNANDEZ, Roberto QUINTANA SOLORZANO, Maiby VALLE ORTA, Jose Manuel LOPEZ NIETO
  • Publication number: 20140114109
    Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Inventors: Jaime SANCHEZ VALENTE, Jose Manuel LOPEZ NIETO, Hector ARMENDARIZ HERRERA, Amada MASSO RAMIREZ, Francisco IVARS BARCELO, Maria de Lourdes Alejandra GUZMAN CASTILLO, Roberto QUINTANA SOLORZANO, Andrea RODRIGUEZ HERNANDEZ, Paz DEL ANGEL VICENTE, Etel MAYA FLORES
  • Patent number: 7358401
    Abstract: The object of the present invention is to provide a method for manufacturing cycloalkanol and/or cycloalkanone with favorable selectivity coefficient by oxidizing cycloalkane with favorable degree of conversion. In the present invention, cycloalkane is oxidized with oxygen in the presence of a catalyst such that cobalt is supported on layer silicate cycloalkane. Said oxidation is performed in the coexistence of a heteropoly acid compound and the heteropoly acid compound preferably contains cobalt as a central element and/or a skeletal element.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: April 15, 2008
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Avelino Corma, Jose Manuel Lopez Nieto, Marcelo Eduardo Domine
  • Patent number: 7355062
    Abstract: A catalyst for the selective oxidation and amoxidation of alkanes and/or alkenes, particularly in processes for obtaining acrylic acid, acrylonitrile and derivatives of these, including a least one oxide of Mo, Te, V, Cu and at least another A component selected from among Nb, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Ga, Sb, Bi, a rare, alkaline or alkali-earth earth, in such a way that the catalyst presents, in a calcined form, an X-ray diffractogram with five intensive diffraction lines, typically the most intense corresponding to diffraction angles of 2? at 22.1±0.4, 27.1±0.4; 28.1±0.4, 36.0±0.4 and 45.1±0.4. In the preferred embodiment, the catalyst has the following empiric formula: MoTehViCujAkOx in which h, i, j, k are values comprised between 0.001 and 4.0 and x depends on the oxidation status or valency of the Mo, Te, V, Cu and A elements.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: April 8, 2008
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Jose Manuel López Nieto, Pablo Botella Asunción, Benjamín Solsona Espriu
  • Patent number: 7319179
    Abstract: The invention relates to a method for the oxidative dehydrogenation of ethane. The inventive method is characterized in that it consists of bringing the ethane into contact with the catalyst containing Mo, Te, V, Nb and at least a fifth element A which is selected from Cu, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Zr, Sb, Bi, an alkali metal, an alkaline-earth metal and a rare earth, in which at least Mo, Te, V and Nb are present in the form of at least one oxide, said catalyst presenting, in calcined form, an X-ray diffractogram with more than ten intense diffraction lines, typically, the most intense lines corresponding to diffraction angles 2? of 7.7°±0.4, 8.9°±0.4, 22.1°+0.4, 26.6°±0.4, 26.9°±0.4, 27.1°±0.4, 28.1°±0.4, 31.2°±0.4, 35.0°±0.4 and 45.06°±0.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: January 15, 2008
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: José Manuel López Nieto, Pablo Botella Asunción, Maria Isabel Vazquez Navarro, Ana Dejoz García
  • Patent number: 7166751
    Abstract: The object of the present invention is to provide a method for manufacturing cycloalkanol and/or cycloalkanone with favorable selectivity coefficient by oxidizing cycloalkane with favorable degree of conversion. In the present invention, cycloalkane is oxidized with oxygen in the presence of a catalyst such that gold is supported on ceric oxide. Said oxidation is preferably performed in the presence of a free-radical initiator and the free-radical initiator is preferably 2,2?-azobis(isobutyronitrile).
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: January 23, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Avelino Corma, Jose Manuel Lopez Nieto
  • Patent number: 7087793
    Abstract: The present invention provides a process for producing cycloalkanol and/or cycloalkanone by oxidizing cycloalkane with molecular oxygen in the presence of a heteropolyacid compound comprising a cobalt atom as a central element and a cobalt atom as a frame element.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: August 8, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Avelino Corma, Jose Manuel Lopez Nieto
  • Publication number: 20040230070
    Abstract: A catalyst for the selective oxidation and amoxidation of alkanes and/or alkenes, particularly in processes for obtaining acrylic acid, acrylonitrile and derivatives of these, including a least one oxide of Mo, Te, V, Cu and at least another A component selected from among Nb, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Ga, Sb, Bi, a rare, alkaline or alkali-earth earth, in such a way that the catalyst presents, in a calcined form, an X-ray diffractogram with five intensive diffraction lines, typically the most intense corresponding to diffraction angles of 2&thgr; at 22.1±0.4, 27.1±0.4; 28.1±0.4, 36.0±0.4 and 45.1±0.4.
    Type: Application
    Filed: January 16, 2004
    Publication date: November 18, 2004
    Inventors: Jose Manuel Lopez Nieto, Pablo Botella Asuncion, Benjamin Solsona Espriu