Patents by Inventor José Manuel Serra Alfaro

José Manuel Serra Alfaro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11603810
    Abstract: The invention relates to an internal combustion engine that comprises a first Brayton cycle comprising a mixed ionic-electronic conducting (MIEC) membrane that separates the O2 from the air such that the suctioned air current is free from N2; a second Brayton cycle combined in a binary manner with the first Brayton cycle and nested with a cycle selected from an Otto cycle and a diesel cycle performed by means of oxy-combustion. The second Brayton cycle transmits mechanical energy and thermal energy from exhaust gases to the first Brayton cycle. The first Brayton cycle provides to the second Brayton cycle compressed O2 from the MIEC membrane. By means of the present engine, the NOx emission into the atmosphere is prevented by the separation of N2 in the MIEC membrane.
    Type: Grant
    Filed: March 21, 2020
    Date of Patent: March 14, 2023
    Assignees: UNIVERSITAT POLITÉCNICA DE VALÉNCIA, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC)
    Inventors: Francisco José Arnau Martínez, Jesús Vicente Benajes Calvo, David Catalán Martínez, José María Desantes Fernández, Luis Miguel García-Cuevas González, José Manuel Serra Alfaro, José Ramón Serrano Cruz
  • Publication number: 20220410077
    Abstract: The present invention relates to a method for producing ceramic gas-separation membranes, which comprises depositing, by means of inkjet printing, water-based inks that form layers of a gas separation membrane. More specifically, the method comprises at least the following steps forming a porous support (i) compatible with a functional separation layer; depositing on the support (i), by means of inkjet printing, at least one functional separation layer (ii) formed by at least two inks, and depositing at least one porous catalytic activation layer (iii) on the functional separation layer (ii); and performing at least one heat treatment, which produces sintering. The functional separation layer (ii) is deposited in a manner to produce a surface with fadings, patterns, or combinations thereof he invention also relates to a gas separation membrane produced using the described method.
    Type: Application
    Filed: September 2, 2022
    Publication date: December 29, 2022
    Inventors: José Manuel SERRA ALFARO, Isaac HERRÁIZ CARDONA, Juan USÓ VILLANUEVA, Juan Carlos GALLART PEDRO, Francisco José FERRANDO SOLIVA
  • Publication number: 20220178333
    Abstract: The invention relates to an internal combustion engine that comprises a first Brayton cycle comprising a mixed ionic-electronic conducting (MIEC) membrane that separates the O2 from the air such that the suctioned air current is free from N2; a second Brayton cycle combined in a binary manner with the first Brayton cycle and nested with a cycle selected from an Otto cycle and a diesel cycle performed by means of oxy-combustion. The second Brayton cycle transmits mechanical energy and thermal energy from exhaust gases to the first Brayton cycle. The first Brayton cycle provides to the second Brayton cycle compressed O2 from the MIEC membrane. By means of the present engine, the NOx emission into the atmosphere is prevented by the separation of N2 in the MIEC membrane.
    Type: Application
    Filed: March 21, 2020
    Publication date: June 9, 2022
    Applicants: Universitat Politécnica de Valéncia, Consejo Superior de Investigaciones Científicas (CSIC)
    Inventors: Francisco José ARNAU MARTÍNEZ, Jesús Vicente BENAJES CALVO, David CATALÁN MARTÍNEZ, José María DESANTES FERNÁNDEZ, Luis Miguel GARCÍA-CUEVAS GONZÁLEZ, José Manuel SERRA ALFARO, José Ramón SERRANO CRUZ
  • Publication number: 20220016595
    Abstract: The present invention relates to the reduction of materials at low temperatures (<600° C.) by means of microwave radiation without needing to use chemical reducing agents or electrical contacts. It relates more specifically to a method for reducing a material, which comprises the following steps: applying microwave radiation to a material disposed in a microwave application cavity; and separating simultaneously the fluid oxidation products generated from the reduced material, such that the method is carried out without chemical reducing agents or electrical contacts.
    Type: Application
    Filed: August 26, 2021
    Publication date: January 20, 2022
    Inventors: José Manuel SERRA ALFARO, José Manuel Catala Civera, Beatriz GARCÌA BAÑOS, Juan Francisco BORRÁS MORELL, Laura NAVARRETE ALGABA
  • Publication number: 20220001326
    Abstract: The invention relates to a method for separating gases which comprises: a first step in which a gas fuel stream comprising combustible substances that produce gas products when oxidised, and an oxygen-rich inlet stream are passed through at least two modules of oxygen-separating ceramic membranes, such that the two streams come into contact through the membranes and exchange heat; a second step of selective diffusion of oxygen from the oxygen-rich stream to the fuel stream, such that the outlet streams from the membrane modules are an oxygen-depleted or completely oxygen-free stream and a partially or completely oxidised stream; and a third step of recovery of at least two separate outlet streams of at least two gases selected from oxygen, nitrogen, carbon dioxide and hydrogen.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 6, 2022
    Inventors: José Manuel Serra Alfaro, Isaac Herráiz Cardona, David Catalán Martínez
  • Patent number: 10213735
    Abstract: The invention relates to a catalytic activation layer for use in oxygen-permeable membranes, which can comprise at least one porous structure formed by interconnected ceramic oxide particles that conduct oxygen ions and electronic carriers, where the surface of said particles that is exposed to the pores is covered with nanoparticles made from a catalyst, the composition of which corresponds to the following formula: A1-x-yBxCyOR where: A can be selected from Ti, Zr, Hf, lanthanide metals and combinations thereof; B and C are metals selected from Al, Ga, Y, Se, B, Nb, Ta, V, Mo, W, Re, Mn, Sn, Pr, Sm, Tb, Yb, Lu and combinations of same; and A must always be different from B. 0.01<x<0.5; 0<y<0.3.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: February 26, 2019
    Assignees: Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Valencia
    Inventors: Jose Manuel Serra Alfaro, Julio Garcia Fayos, Laura Navarrete Algaba, Vicente Bernardo Vert Belenguer
  • Publication number: 20170100697
    Abstract: The invention relates to a catalytic activation layer for use in oxygen-permeable membranes, which can comprise at least one porous structure formed by interconnected ceramic oxide particles that conduct oxygen ions and electronic carriers, where the surface of said particles that is exposed to the pores is covered with nanoparticles made from a catalyst, the composition of which corresponds to the following formula: A1-x-yBxCyOR where: A can be selected from Ti, Zr, Hf, lanthanide metals and combinations thereof; B and C are metals selected from Al, Ga, Y, Se, B, Nb, Ta, V, Mo, W, Re, Mn, Sn, Pr, Sm, Tb, Yb, Lu and combinations of same; and A must always be different from B. 0.01 <x<0.5; 0<y<0.3.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Inventors: Jose Manuel SERRA ALFARO, Julio GARCIA FAYOS, Laura NAVARRETE ALGABA, Vicente Bernardo VERT BELENGUER
  • Publication number: 20130216938
    Abstract: The material according to the invention is based on a material having the composition Ln6WO12 with a defect fluorite structure in which the cations, at least partially, have been substituted in a defined manner in the A and/or B position. It has the following composition: Ln1-xAx)6(W1-yBy)zO12-? where Ln=an element from the group (La, Pr, Nd, Sm), A=at least one element from the group (La, Ce, Pr, Nd, Eu, Gd, Tb, Er, Yb, Ca, Mg, Sr, Ba, Th, In, Pb), B=at least one element from the group (Mo, Re, U, Cr, Nb), 0?x?0.7 and 0?y?0.5, wherein, however, either x or y>0, 1.00?z?1.25 and 0???0.3. The mixed proton-electron conducting material exhibits an improved mixed conductivity, good chemical stability as well as good sintering properties, and can be used in particular as a material for a hydrogen-separating membrane or as a electrolyte at higher temperatures.
    Type: Application
    Filed: June 28, 2011
    Publication date: August 22, 2013
    Applicants: UNIVERSIDAD POLITECNICA DE VALENCIA, FORSCHUNGSZENTRUM JULICH GMBH
    Inventors: Wilhelm Albert Meulenberg, Mariya Ivanova, Hans Peter Buchkremer, Detlev Stoever, Jose Manuel Serra Alfaro, Sonia Escolastico
  • Patent number: 8486184
    Abstract: A composite membrane for selective gas separation, comprises a layer system having a continuously porous, mechanically stable carrier layer, which has an average pore size in the ?m range, further having at least one continuously porous intermediate layer, which is disposed on the carrier layer and has an average pore size in the range of 2 to 200 nm, and further having a gastight functional layer, which is disposed on the intermediate layer and is made of a mixed-conductive material having a maximum layer thickness of 1 ?m. The carrier layer comprises a structural ceramic, a metal, or a cermet and has a layer thickness of no more than 1 mm. The intermediate layer is present with a total layer thickness of no more than 100 ?m and has an average pore size in the range of 10 to 100 nm. The functional layer comprises a perovskite, a fluorite, or a material having a K2NiF4 structure, such as La1-xSrxCo1-yFeyO3-8 (LSCF).
    Type: Grant
    Filed: February 21, 2009
    Date of Patent: July 16, 2013
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Stefan Baumann, Jose Manuel Serra Alfaro, Wilhelm Albert Meulenberg, Hans-Peter Buchkremer, Detlev Stoever
  • Publication number: 20120208904
    Abstract: The present invention relates to a sulphided multi-metallic catalyst, a process for obtaining it by preparing a metal mixture and subsequent sulphidation thereof and its use in a process for producing higher alcohols (C2+), mainly ethanol, through the catalytic conversion of synthesis gas.
    Type: Application
    Filed: August 12, 2010
    Publication date: August 16, 2012
    Applicant: ABENGOA BIOENERGIA NUEVAS TECNOLOGLAS S.A.
    Inventors: Gonzalo Prieto González, José Manuel Serra Alfaro, Agustin Martínez Feliu, Juan Luis Yagüe, José Caraballo Bello, Ricardo Arjona Antolín
  • Publication number: 20120202898
    Abstract: The present invention relates to a sulphided multi-metallic catalyst, the process for obtaining it by sulphidation of a multi-metallic solid and use thereof in a process for producing higher alcohols (C2+), mainly ethanol, through the catalytic conversion of synthesis gas.
    Type: Application
    Filed: August 12, 2010
    Publication date: August 9, 2012
    Applicant: Abengoa Bioenergia Nuevas Technologias ,S.A.
    Inventors: Gonzalo Prieto González, José Manuel Serra Alfaro, Agustin Martinez Feliu, Juan Luis Sanz Yagüe, José Caraballo Bello, Ricardo Arjona Antolín
  • Publication number: 20110183221
    Abstract: The present invention relates to a catalytic porous layer for oxygen activation that can be used in solid oxide fuel cells (SOFC) and dense ceramic membranes for oxygen separation at a high temperature. This porous layer is mainly composed of an electron and oxygen ion mixed conductive material and has a structure selected from simple perovskite-type structures, double perovskite-type structures or perovskite-related structures, i.e. structures such as the Ruddlesden-Popper, Dion-Jacobson and Aurivillius type.
    Type: Application
    Filed: June 25, 2009
    Publication date: July 28, 2011
    Inventors: José Manuel Serra Alfaro, Vicente Bernardo Vert Belenguer, Sonia Escolástico Rozalén
  • Patent number: 7947252
    Abstract: The invention relates to a microporous crystalline material which is characterised in that it has the following chemical composition in the calcined state: X2O3:n YO2:m GeO2, wherein (n+m) is equal to at least 5, X is a trivalent element, Y corresponds to one or more tetravalent elements other than Ge and the Y/Ge ratio is greater than 1. Moreover, in the synthesised form without calcination, said material has an X-ray diffraction pattern in which the main lines thereof are as follows: (1), in which (mf) represents relative intensity of between 80 and 100, “d” represents relative intensity of between 20 and 40 and “md” represents relative intensity of between 0 and 20, which is calculated as a percentage with respect to the most intense peak. The invention also relates to the method of preparing said material and the use thereof in the conversion of food products comprising organic compounds.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: May 24, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Avelino Corma Canos, Manuel Moliner Marin, Maria Jose Diaz Cabanas, Jose Manuel Serra Alfaro, Rafael Casteñeda Sanchez
  • Publication number: 20110020192
    Abstract: The invention relates to a composite membrane for selective gas separation, comprising a layer system having a through-and-through porous, mechanically stable carrier layer, which has an average pore size in the ?m range, further having at least one through-and-through porous intermediate layer, which is disposed on the carrier layer and has an average pore size in the range between 2 and 200 nm, and further having a gas-tight functional layer, which is disposed on the intermediate layer and is made of mixed-conductive material having a maximum layer thickness of 1 ?m. The carrier layer comprises structural ceramics, a metal or a cermet and has a layer thickness of no more than 1 mm. The intermediate layer is present in a total layer thickness of no more than 100 ?m and has an average pore size in the range of 10 and 100 nm. The functional layer comprises a perovskite, a fluorite, or a material having a K2NiF4structure, such as La1-xSrxCo1-yFeyO3-?(LSCF).
    Type: Application
    Filed: February 21, 2009
    Publication date: January 27, 2011
    Applicant: FORSCHUNGSZENTRUM JÜLICH GMBH
    Inventors: Stefan Baumann, Jose Manuel Serra Alfaro, Wilhelm Albert Meulenberg, Hans-Peter Buchkremer, Detlev Stoever
  • Patent number: 7629499
    Abstract: A process for transalkylation of an alkyl-aromatic hydrocarbon feedstock that has at least 9 carbon atoms per molecule that comprises a) the introduction of said alkyl-aromatic hydrocarbon feedstock at the inlet of a first reaction zone where it is brought into contact with at least a first zeolitic catalyst, b) the introduction of at least a portion of the effluent that is obtained from stage a) and a feedstock that contains benzene and/or toluene at the inlet of a second reaction zone that contains at least a second zeolitic catalyst, and c) the separation of at least a portion of the effluent that is obtained from stage b) is described.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: December 8, 2009
    Assignee: Institut Francais du Petrole
    Inventors: José Manuel Serra Alfaro, Avelino Corma, Emmanuelle Guillon
  • Publication number: 20090266237
    Abstract: The invention relates to a method for the hydrothermal production of a microporous membrane. According to said method, a colloidal solution comprising zeolite frameworks with 4-ring, 6-ring, and/or 8-ring pores which are provided as crystallites whose size ranges from 2 to 25 nm is applied to a porous substrate with the aid of a wet application technique. The applied layer is contacted with a hydrothermal liquid, and a nanocrystalline, microporous zeolite layer having an average pore diameter of 0.2 to 0.45 nm is synthesized at temperatures ranging between 50 and 250° C. and at an autogenous pressure. Such a microporous membrane comprising a porous substrate and at least one nanocrystalline zeolite layer that is disposed thereupon and has an average pore diameter of 0.2 to 0.45 nm is advantageously suitable for use as a separating device for gas phase separation, making it possible to separate particularly N2O2, N2/CO2, H2/CO2, or CO2/CH4 gas mixtures.
    Type: Application
    Filed: April 1, 2006
    Publication date: October 29, 2009
    Inventors: Jose Manuel Serra Alfaro, George Johannes Wilhelmus Van Der Donk, Wilhelm Albert Meulenberg, Detlev Stover, Hermann Gies
  • Publication number: 20090124484
    Abstract: The invention relates to a microporous crystalline material which is characterised in that it has the following chemical composition in the calcined state: X2O3: n YO2: m GeO2, wherein (n+m) is equal to at least 5, X is a trivalent element, Y corresponds to one or more tetravalent elements other than Ge and the Y/Ge ratio is greater than 1. Moreover, in the synthesised form without calcination, said material has an X-ray diffraction pattern in which the main lines thereof are as follows: (1), in which (mf) represents relative intensity of between 80 and 100, “d” represents relative intensity of between 20 and 40 and “md” represents relative intensity of between 0 and 20, which is calculated as a percentage with respect to the most intense peak. The invention also relates to the method of preparing said material and the use thereof in the conversion of food products comprising organic compounds.
    Type: Application
    Filed: January 17, 2006
    Publication date: May 14, 2009
    Inventors: Avelino Corma Canos, Manuel Moliner Marin, Maria Jose Diaz Cabanas, Jose Manuel Serra Alfaro, Rafael Casteneda Sanchez
  • Patent number: 7419830
    Abstract: A catalytic testing device comprising a reaction block comprising a set of reaction chambers, each chamber comprising a fluid inlet and outlet connected to an outgoing fluid duct connected to analysis means, fluid feed means capable of performing regulated dosing of flows of the fluid at the required pressure independently in each of the reaction chambers, automatic and dynamic pressure control means, capable of performing pressure regulation in each reaction chamber, which comprise a non-return valve in the outgoing fluid duct between the outlets of the reaction chambers and a common regulating tank that receives the outgoing fluid from the chambers, a pressure sensor provided in a first outlet duct and an automatic needle valve provided in a second outlet duct from the tank.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: September 2, 2008
    Assignee: Universidad Politecnia De Valencia
    Inventors: Avelino Corma Canós, Jose Manuel Serra Alfaro, Juan Hernández Fenollosa
  • Publication number: 20080206606
    Abstract: A cathode for high-temperature fuel cell, comprising a layer of porous particles applied on a sintered electrolyte, the layer having a surface area of 15 to 900 m2 per gram and the average size of the porous particles do not exceed 30 nm and a method for preparing the same.
    Type: Application
    Filed: April 27, 2006
    Publication date: August 28, 2008
    Inventors: Jose Manuel Serra Alfaro, Sevn Uhlenbruck, Hans-Peter Buchkremer, Detlev Stoever
  • Publication number: 20080021253
    Abstract: The invention relates to a catalytic method for the transalkylation/dealkylation of organic compounds, consisting in bringing a supply comprising organic compounds into contact with a catalyst containing a first zeolitic component that is selected from among: a) one or more zeolites having crystalline structure ITQ-13; b) one or more zeolites having crystalline structure ITQ-13, which are modified either by means of selectivation or with the incorporation of one or more metals, or both; and c) a mixture of a) and b). The invention also relates to a catalyst comprising one or more modified zeolites having crystalline structure ITQ-13.
    Type: Application
    Filed: May 25, 2005
    Publication date: January 24, 2008
    Inventors: Avelino Corma Canos, Jose Manuel Serra Alfaro, Vicente Fornes Segui, Rafael Castaneda Sanchez