Patents by Inventor José María Martínez-Val Peñalosa

José María Martínez-Val Peñalosa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11746010
    Abstract: Direct thermal decomposition of hydrocarbons into solid carbon and hydrogen is performed by a process and a device. The process comprises preheating a hydrocarbon gas stream to a temperature between 500° C. and 700° C. and injecting the pre-heated hydrocarbon gas stream into the reactor pool of a liquid metal reactor containing a liquid media; forming a multi-phase flow with a hydrocarbon gas comprising hydrogen and solid carbon at a temperature between 900° C. and 1200° C.; forming a carbon layer on the free surface of the liquid media made up of solid carbon particles which are then displaced into at least one carbon extraction system and at least one recipient for collecting them; and, at the same time, the gas comprising hydrogen leaves the reactor pool through a porous rigid section, being collected at a gas outlet collector from where the gas comprising hydrogen finally leaves the liquid metal reactor.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: September 5, 2023
    Assignees: UNIVERSIDAD POLITECNICA DE MADRID, KARLSRUHER INSTITUT FÜR TECHNOLOGIE
    Inventors: Alberto Abánades Velasco, Javier Muñoz Antón, José María Martínez-Val Peñalosa, Tobias Geissler, Leonid Stoppel, Benjamin Dietrich, Michael Plevan, Thomas Wetzel
  • Publication number: 20210032102
    Abstract: Direct thermal decomposition of hydrocarbons into solid carbon and hydrogen is performed by a process and a device. The process comprises preheating a hydrocarbon gas stream to a temperature between 500° C. and 700° C. and injecting the pre-heated hydrocarbon gas stream into the reactor pool of a liquid metal reactor containing a liquid media; forming a multi-phase flow with a hydrocarbon gas comprising hydrogen and solid carbon at a temperature between 900° C. and 1200° C.; forming a carbon layer on the free surface of the liquid media made up of solid carbon particles which are then displaced into at least one carbon extraction system and at least one recipient for collecting them; and, at the same time, the gas comprising hydrogen leaves the reactor pool through a porous rigid section, being collected at a gas outlet collector from where the gas comprising hydrogen finally leaves the liquid metal reactor.
    Type: Application
    Filed: February 1, 2019
    Publication date: February 4, 2021
    Inventors: Alberto ABÁNADES VELASCO, Javier MUÑOZ ANTÓN, José María MARTÍNEZ-VAL PEÑALOSA, Tobias GEISSLER, Leonid STOPPEL, Benjamin DIETRICH, Michael PLEVAN, Thomas WETZEL
  • Patent number: 8915243
    Abstract: Thermal solar energy collector, in which a solar radiation absorption panel, inside which the heat-conducting fluid flows, is situated inside a parallelepipedal box, with an opening having a transparent cover at the front, which may be doubled so as to leave an atmospheric space in the middle. The rear wall of the box has a system of seals and reservoirs which are inset in the wall so that they accommodate the expansion and contraction of vertical tubes of the panel and horizontal connections by means of gentle changes in curvature of the tube bends and slight rotations of the reservoirs, with the addition of a system for filling the box with an inert gas, the pressure of which may be chosen from a range of between a thousandth of an atmosphere and one atmosphere, there being provided for this purpose an external gas circuit, with low- and high-pressure tanks, an intermediate compressor.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: December 23, 2014
    Assignee: Universidad Politecnica de Madrid
    Inventor: José María Martínez-Val Peñalosa
  • Patent number: 8899763
    Abstract: A device for concentrating solar radiation (4) with longitudinal mirrors (7) and a longitudinal receiver (1), has mirrors with a circular cross-section with a radius of curvature that is twice the transverse distance from the center (35) of each mirror to the central point (3) of the receiver. The width of the receiver is 1% of the transverse distance from the central point to the center (89) of the furthest mirror (32). The width of each mirror is determined according to the drift of the rays reflected when the mirror focuses the sun, prescribing an equal width for all mirrors, which is: equal to the width of the active face (2) of the receiver when mounted according to the meridian; and triple the width of the active face (2) of the receiver when mounted according to the parallel of latitude. The mirrors are installed in a contiguous manner and the receiver is installed at a height on columns (8).
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: December 2, 2014
    Assignees: Universidad Politecnica de Madrid, Universidad Nacional de Educacion a Distancia
    Inventors: Jose Maria Martinez-Val Peñalosa, Manuel Valdes Del Fresno, Alberto Abanades Velasco, Ruben R Amengual Matas, Mireia Piera Piera Carrete, Maria Jose Montes Pita, Antonio Rovira De Antonio, Javier Muñoz Anton
  • Publication number: 20130152914
    Abstract: A receiver for a solar power plant with mirrors (7) and horizontal longitudinal receivers (1) includes a rotating shaft and axis of symmetry which (14) are parallel to a longitudinal axis of the radiation receiver. The receiver is formed by a balanced expansion and pressure collector, the tubes (19) of which are grouped in a separate central bundle (20) and adjacent bundles (21 and 22), thermally insulated from one another longitudinally. Heat transfer fluid circulates first through both adjacent bundles in parallel, to then be injected into the central bundle, where the radiation intensity received is greater because of receiving the radiation from the array of mirrors focused on the midline of the active face (2) of the receiver, each bundle of tubes being able to be covered by a separate (60, 61, 62) transparent window (28).
    Type: Application
    Filed: May 27, 2011
    Publication date: June 20, 2013
    Applicants: UNIVERSIDAD NACIONAL DE EDUCACION A DISTANCIA, UNIVERSIDAD POLITECNICA DE MADRID
    Inventors: José Maria Martínez-Val Peñalosa, Manuel Valdés Del Fresno, Alberto Abánades Velasco, Rubén R. Amengual Matas, Javier Muñoz Antón, Mireia Piera Carreté, María José Montes Pita, Antonio Rovira De Antonio
  • Publication number: 20130128329
    Abstract: A device for concentrating solar radiation (4) with longitudinal mirrors (7) and a longitudinal receiver (1), has mirrors with a circular cross-section with a radius of curvature that is twice the transverse distance from the centre (35) of each mirror to the central point (3) of the receiver. The width of the receiver is 1% of the transverse distance from the central point to the centre (89) of the furthest mirror (32). The width of each mirror is determined according to the drift of the rays reflected when the mirror focuses the sun, prescribing an equal width for all mirrors, which is: equal to the width of the active face (2) of the receiver when mounted according to the meridian; and triple the width of the active face (2) of the receiver when mounted according to the parallel of latitude. The mirrors are installed in a contiguous manner and the receiver is installed at a height on columns (8).
    Type: Application
    Filed: May 18, 2011
    Publication date: May 23, 2013
    Applicants: UNIVERSIDAD NACIONAL DE EDUCACION A DISTANCIA, UNIVERSIDAD POLITECNICA DE MADRID
    Inventors: Jose Maria Martinez-Val Peñalosa, Manuel Valdes Del Fresno, Alberto Abanades Velasco, Ruben R. Amengual Matas, Mireia Piera Piera Carrete, Maria Jose Montes Pita, Antonio Rovira De Antonio, Javier Muñoz Anton
  • Publication number: 20110308513
    Abstract: Thermal solar energy collector, in which a solar radiation absorption panel, inside which the heat-conducting fluid flows, is situated inside a parallelepipedal box, with an opening having a transparent cover at the front, which may be doubled so as to leave an atmospheric space in the middle. The rear wall of the box has a system of seals and reservoirs which are inset in the wall so that they accommodate the expansion and contraction of vertical tubes of the panel and horizontal connections by means of gentle changes in curvature of the tube bends and slight rotations of the reservoirs, with the addition of a system for filling the box with an inert gas, the pressure of which may be chosen from a range of between a thousandth of an atmosphere and one atmosphere, there being provided for this purpose an external gas circuit, with low- and high-pressure tanks, an intermediate compressor.
    Type: Application
    Filed: December 3, 2009
    Publication date: December 22, 2011
    Applicant: UNIVERSIDAD POLITÉCNICA DE MADRID
    Inventor: José Maria Martínez-Val Peñalosa