Patents by Inventor José Mendez
José Mendez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12152119Abstract: Inorganic infrared attenuation agent blends have been developed to improve the thermal insulation properties of polymeric foams such as polystyrene low density foams. The inorganic infrared attenuation agent blends can include two or more metal oxides such as silicon dioxide, manganese (IV) oxide, iron (III) oxide, magnesium oxide, bismuth (III) oxide, cobalt oxide, zirconium (IV) oxide, molybdenum (III) oxide, titanium oxide, and calcium oxide. In some preferred embodiments, the inorganic infrared attenuation agent blends can include four or more of these metal oxides.Type: GrantFiled: August 21, 2023Date of Patent: November 26, 2024Assignee: Owens Corning Intellectual Capital, LLCInventors: Xiangmin Han, Nigel Ravenscroft, Jose Mendez-Andino, Chase J. Boudreaux, Yadollah Delaviz, John R. Green, Heather Alspaugh
-
Publication number: 20240052123Abstract: Inorganic infrared attenuation agent blends have been developed to improve the thermal insulation properties of polymeric foams such as polystyrene low density foams. The inorganic infrared attenuation agent blends can include two or more metal oxides such as silicon dioxide, manganese (IV) oxide, iron (III) oxide, magnesium oxide, bismuth (III) oxide, cobalt oxide, zirconium (IV) oxide, molybdenum (III) oxide, titanium oxide, and calcium oxide. In some preferred embodiments, the inorganic infrared attenuation agent blends can include four or more of these metal oxides.Type: ApplicationFiled: August 21, 2023Publication date: February 15, 2024Inventors: Xiangmin Han, Nigel Ravenscroft, Jose Mendez-Andino, Chase J. Boudreaux, Yadollah Delaviz, John R. Green, Heather Alspaugh
-
Patent number: 11780980Abstract: Inorganic infrared attenuation agent blends have been developed to improve the thermal insulation properties of polymeric foams such as polystyrene low density foams. The inorganic infrared attenuation agent blends can include two or more metal oxides such as silicon dioxide, manganese (IV) oxide, iron (III) oxide, magnesium oxide, bismuth (III) oxide, cobalt oxide, zirconium (IV) oxide, molybdenum (III) oxide, titanium oxide, and calcium oxide. In some preferred embodiments, the inorganic infrared attenuation agent blends can include four or more of these metal oxides.Type: GrantFiled: November 1, 2022Date of Patent: October 10, 2023Assignee: Owens Corning Intellectual Capital, LLCInventors: Xiangmin Han, Nigel Ravenscroft, Jose Mendez-Andino, Chase J. Boudreaux, Yadollah Delaviz, John R. Green, Heather Alspaugh
-
Publication number: 20230087175Abstract: Inorganic infrared attenuation agent blends have been developed to improve the thermal insulation properties of polymeric foams such as polystyrene low density foams. The inorganic infrared attenuation agent blends can include two or more metal oxides such as silicon dioxide, manganese (IV) oxide, iron (III) oxide, magnesium oxide, bismuth (III) oxide, cobalt oxide, zirconium (IV) oxide, molybdenum (III) oxide, titanium oxide, and calcium oxide. In some preferred embodiments, the inorganic infrared attenuation agent blends can include four or more of these metal oxides.Type: ApplicationFiled: November 1, 2022Publication date: March 23, 2023Inventors: Xiangmin Han, Nigel Ravenscroft, Jose Mendez-Andino, Chase J. Boudreaux, Yadollah Delaviz, John R. Green, Heather Alspaugh
-
Patent number: 11499026Abstract: Inorganic infrared attenuation agent blends have been developed to improve the thermal insulation properties of polymeric foams such as polystyrene low density foams. The inorganic infrared attenuation agent blends can include two or more metal oxides such as silicon dioxide, manganese (IV) oxide, iron (III) oxide, magnesium oxide, bismuth (III) oxide, cobalt oxide, zirconium (IV) oxide, molybdenum (III) oxide, titanium oxide, and calcium oxide. In some preferred embodiments, the inorganic infrared attenuation agent blends can include four or more of these metal oxides.Type: GrantFiled: January 28, 2021Date of Patent: November 15, 2022Assignee: Owens Corning Intellectual Capital, LLCInventors: Xiangmin Han, Nigel Ravenscroft, Jose Mendez-Andino, Chase J. Boudreaux, Yadollah Delaviz, John R. Green, Heather Alspaugh
-
Publication number: 20220243066Abstract: Asphalt compositions are provided that include bio-oil. Some compositions allow for upgrading of deasphalter rock to asphalt with a performance grade suitable for use as paving asphalt by addition of bio-oil to the deasphalter rock. Other compositions allow for upgrading of paving grade asphalt to roofing asphalt by addition of bio-oil followed by oxidation. Methods of forming asphalt compositions including bio-oil are also provided.Type: ApplicationFiled: January 27, 2022Publication date: August 4, 2022Inventors: John A. Noel, Bennett J. Tardiff, Pavel Kriz, Luis Jose Mendez
-
Publication number: 20220185972Abstract: An environmentally friendly, aqueous binder composition that includes a metal salt and a polyol is provided. The metal salt may be a water soluble salt, including salts of boron, aluminum, gallium, indium, tin, zirconium, thallium, lead, and bismuth. The polyol may include water miscible or water soluble polymeric alcohols including polyvinyl alcohol. The binder composition may be used in the formation of insulation materials and non-woven mats, among other products.Type: ApplicationFiled: December 3, 2021Publication date: June 16, 2022Inventors: Bryan Alan Albani, Jesus M. Hernandez-Torres, Jose Mendez-Andino, Scott William Schweiger
-
Publication number: 20220162410Abstract: An aqueous binder composition is disclosed that comprises at least one long-chain polyol having at least two hydroxyl groups and a number average molecular weight of at least 2,000 Daltons; a primary cross-linking agent comprising at least two carboxylic acid groups; and a secondary cross-linking agent comprising a short-chain polyol having at least two hydroxyl groups and a number average molecular weight less than 2,000 Daltons.Type: ApplicationFiled: April 7, 2020Publication date: May 26, 2022Inventors: Gert Mueller, Xiujuan Zhang, Liang Chen, Jose Mendez-Andino
-
Patent number: 11192986Abstract: An environmentally friendly, aqueous binder composition that includes a metal salt and a polyol is provided. The metal salt may be a water soluble salt, including salts of boron, aluminum, gallium, indium, tin, zirconium, thallium, lead, and bismuth. The polyol may include water miscible or water soluble polymeric alcohols including polyvinyl alcohol. The binder composition may be used in the formation of insulation materials and non-woven mats, among other products.Type: GrantFiled: June 6, 2017Date of Patent: December 7, 2021Assignee: Owens Corning Intellectual Capital, LLCInventors: Bryan Alan Albani, Jesus M. Hernandez-Torres, Jose Mendez-Andino, Scott William Schweiger
-
Publication number: 20210246280Abstract: Inorganic infrared attenuation agent blends have been developed to improve the thermal insulation properties of polymeric foams such as polystyrene low density foams. The inorganic infrared attenuation agent blends can include two or more metal oxides such as silicon dioxide, manganese (IV) oxide, iron (III) oxide, magnesium oxide, bismuth (III) oxide, cobalt oxide, zirconium (IV) oxide, molybdenum (III) oxide, titanium oxide, and calcium oxide. In some preferred embodiments, the inorganic infrared attenuation agent blends can include four or more of these metal oxides.Type: ApplicationFiled: January 28, 2021Publication date: August 12, 2021Inventors: Xiangmin Han, Nigel Ravenscroft, Jose Mendez-Andino, Chase J. Boudreaux, Yadollah Delaviz, John R. Green, Heather Alspaugh
-
Patent number: 10934409Abstract: Inorganic infrared attenuation agent blends have been developed to improve the thermal insulation properties of polymeric foams such as polystyrene low density foams. The inorganic infrared attenuation agent blends can include two or more metal oxides such as silicon dioxide, manganese (IV) oxide, iron (III) oxide, magnesium oxide, bismuth (III) oxide, cobalt oxide, zirconium (IV) oxide, molybdenum (III) oxide, titanium oxide, and calcium oxide. In some preferred embodiments, the inorganic infrared attenuation agent blends can include four or more of these metal oxides.Type: GrantFiled: August 20, 2018Date of Patent: March 2, 2021Assignee: Owens Coming Intellectual Capital, LLCInventors: Xiangmin Han, Nigel Ravenscroft, Jose Mendez-Andino, Chase J. Boudreaux, Yadollah Delaviz, John R. Green, Heather Alspaugh
-
Publication number: 20190144624Abstract: Inorganic infrared attenuation agent blends have been developed to improve the thermal insulation properties of polymeric foams such as polystyrene low density foams. The inorganic infrared attenuation agent blends can include two or more metal oxides such as silicon dioxide, manganese (IV) oxide, iron (III) oxide, magnesium oxide, bismuth (III) oxide, cobalt oxide, zirconium (IV) oxide, molybdenum (III) oxide, titanium oxide, and calcium oxide. In some preferred embodiments, the inorganic infrared attenuation agent blends can include four or more of these metal oxides.Type: ApplicationFiled: August 20, 2018Publication date: May 16, 2019Inventors: Xiangmin Han, Nigel Ravenscroft, Jose Mendez-Andino, Chase J. Boudreaux, Yadollah Delaviz, John R. Green, Heather Alspaugh
-
Patent number: 10091099Abstract: Embodiments of the present invention provide for continuity of “stateful” routing sessions in the presence of source network address translation (NAT). Specifically, a stateful routing session may be moved from one routing path to another routing path, e.g., due to a routing change in the communication network, where the routing paths have different source NAT status. For example, the stateful routing session may be moved from a path having no source NAT to a path having source NAT, from a path having source NAT to a path having no source NAT, or from paths having different source network address translations. When a stateful routing session is moved from an existing routing path to a new routing path, the routers detect the routing change based on the change in source NAT status using a special link monitoring protocol.Type: GrantFiled: May 31, 2016Date of Patent: October 2, 2018Assignee: 128 Technology, Inc.Inventors: Abilash Menon, Anna Yungelson, Scott A. McCulley, Robert Penfield, Francisco Jose Mendez Cirera, Thomas E. Sullivan
-
Publication number: 20170349718Abstract: An environmentally friendly, aqueous binder composition that includes a metal salt and a polyol is provided. The metal salt may be a water soluble salt, including salts of boron, aluminum, gallium, indium, tin, zirconium, thallium, lead, and bismuth. The polyol may include water miscible or water soluble polymeric alcohols including polyvinyl alcohol. The binder composition may be used in the formation of insulation materials and non-woven mats, among other products.Type: ApplicationFiled: June 6, 2017Publication date: December 7, 2017Inventors: Bryan Alan Albani, Jesus M. Hernandez-Torres, Jose Mendez-Andino, Scott William Schweiger
-
Publication number: 20170346787Abstract: Embodiments of the present invention provide for continuity of “stateful” routing sessions in the presence of source network address translation (NAT). Specifically, a stateful routing session may be moved from one routing path to another routing path, e.g., due to a routing change in the communication network, where the routing paths have different source NAT status. For example, the stateful routing session may be moved from a path having no source NAT to a path having source NAT, from a path having source NAT to a path having no source NAT, or from paths having different source network address translations. When a stateful routing session is moved from an existing routing path to a new routing path, the routers detect the routing change based on the change in source NAT status using a special link monitoring protocol.Type: ApplicationFiled: May 31, 2016Publication date: November 30, 2017Inventors: Abilash Menon, Anna Yungelson, Scott A. McCulley, Robert Penfield, Francisco Jose Mendez Cirera, Thomas E. Sullivan
-
Patent number: 8772134Abstract: A method for manufacturing semiconductor chips from a semiconductor wafer, including the steps of: fastening, on a first support frame, a second support frame having outer dimensions smaller than the outer dimensions of the first frame and greater than the inner dimensions of the first frame; arranging the wafer on a surface of a film stretched on the second frame; carrying out wafer processing operations by using equipment capable of receiving the first frame; separating the second frame from the first frame and removing the first frame; and carrying out wafer processing operations by using equipment capable of receiving the second frame.Type: GrantFiled: March 4, 2013Date of Patent: July 8, 2014Assignee: STMicroelectronics (Tours) SASInventors: Vincent Jarry, Patrick Hougron, Dominique Touzet, José Mendez
-
Patent number: 8417759Abstract: A method and apparatus for efficiently performing digital signal processing is provided. In one embodiment, kernel matrix computations are simplified by grouping similar kernel coefficients together. Each coefficient group contains only coefficients having the same value. At least one of the coefficient groups has at least two coefficients. Techniques are disclosed herein to efficiently apply successive first order difference operations to a data signal. The techniques allow for a low gate count. In particular, the techniques allow for a reduction of the number of multipliers without increasing clock frequency, in an embodiment. The techniques update pixels of a data signal at a rate of two clock cycles per each pixel, in an embodiment. The techniques allow hardware that is used to process a first pixel to be re-used to start the processing of a second pixel while the first pixel is still being processed.Type: GrantFiled: November 13, 2007Date of Patent: April 9, 2013Assignee: DigitalOptics Corporation Europe LimitedInventors: Hari Chakravarthula, Christopher Loo, Jose Mendez
-
Patent number: 8409967Abstract: A method for manufacturing semiconductor chips from a semiconductor wafer, including the steps of: fastening, on a first support frame, a second support frame having outer dimensions smaller than the outer dimensions of the first frame and greater than the inner dimensions of the first frame; arranging the wafer on a surface of a film stretched on the second frame; carrying out wafer processing operations by using equipment capable of receiving the first frame; separating the second frame from the first frame and removing the first frame; and carrying out wafer processing operations by using equipment capable of receiving the second frame.Type: GrantFiled: June 6, 2011Date of Patent: April 2, 2013Assignee: STMicroelectronics (Tours) SASInventors: Vincent Jarry, Patrick Hougron, Dominique Touzet, José Mendez
-
Publication number: 20110300647Abstract: A method for manufacturing semiconductor chips from a semiconductor wafer, including the steps of: fastening, on a first support frame, a second support frame having outer dimensions smaller than the outer dimensions of the first frame and greater than the inner dimensions of the first frame; arranging the wafer on a surface of a film stretched on the second frame; carrying out wafer processing operations by using equipment capable of receiving the first frame; separating the second frame from the first frame and removing the first frame; and carrying out wafer processing operations by using equipment capable of receiving the second frame.Type: ApplicationFiled: June 6, 2011Publication date: December 8, 2011Applicant: STMicroelectronics (Tours) SASInventors: Vincent Jarry, Patrick Hougron, Dominique Touzet, José Mendez
-
Publication number: 20090237026Abstract: Method and system for backlash control in gear trains that are driven by electric drives controlled by a drive controller. The drive controller causes the drives to generate continuously opposing torques and adjusts torque rotational offsets so as to maintain desired backlash and gross motion of the driven gear.Type: ApplicationFiled: February 13, 2009Publication date: September 24, 2009Applicant: Siemens Energy & Automation, Inc.Inventors: Razvan Panaitescu, Markus Geyer, Jose Mendez