Patents by Inventor Jos Praat

Jos Praat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11421875
    Abstract: A burner control system for improving burner performance and efficiency may determine fuel and air channel or manifold parameters. Determination of parameters may be performed with a sensor connected across the air and fuel channels. A signal from the sensor may control the parameters which in turn affect the amounts of fuel and air to the burner via a controller. Parameter control of the fuel and air in their respective channels may result in more accurate fuel and air ratio control. One or more flow restrictors in fuel and/or air bypass channels may further improve accuracy of the fuel and air ratio. The channels may be interconnected with a pressure or flow divider. Byproducts of combustion in the exhaust, temperatures of gas and air, flame quality and/or other items may be monitored and adjusted with control of the fuel and air ratio for optimum combustion in the burner.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: August 23, 2022
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Gregory Young, David Kucera, Donald J. Kasprzyk, Willem Super, Jos Praat, Roelof Thiewes, Hans M. van der Mei, Brian Zabel, John D. Mitchell
  • Patent number: 10697815
    Abstract: Methods and systems for mitigating condensation in a sensor module of a combustion appliance are disclosed. In one example, a fluid flow from a main conduit is cooled with a passive heat exchanger. A sensor of a sensor module may be heated to a temperature above the cooled fluid flow. Cooling the incoming fluid flow with a passive heat exchanger and/or heating the downstream flow sensor may help mitigate condensation in the sensor module, and in particular, on the sensor device. This may help increase the reliability of the system.
    Type: Grant
    Filed: June 9, 2018
    Date of Patent: June 30, 2020
    Assignee: Honeywell International Inc.
    Inventors: David Kucera, Jos Praat, Hans van der Mei, Willem Super, Milos Trenz, Martin Bragg
  • Patent number: 10591161
    Abstract: Methods and systems for controlling a gas valve assembly and/or combustion appliance may include identifying a flow rate of gas to a burner of a combustion appliance and determining if the flow rate is sufficient for a burner load of the combustion appliance. If the flow rate is sufficient for a burner load, a position of the valve member of the valve assembly and/or the burner load may be adjusted such that the flow rate of gas meets a target flow rate of gas for the current burner load. If the flow rate is insufficient to meet the current burner load, the valve member of the valve assembly may be positioned in a fully open position to at least partially meet the current burner load. If the flow rate is below a minimum flow rate threshold, the valve member may be moved to a fully closed position.
    Type: Grant
    Filed: June 9, 2018
    Date of Patent: March 17, 2020
    Assignee: Honeywell International Inc.
    Inventors: Willem Super, Jos Praat, Hans van der Mei, Frank van Prooijen
  • Publication number: 20190376687
    Abstract: Methods and systems for controlling a gas valve assembly and/or combustion appliance may include identifying a flow rate of gas to a burner of a combustion appliance and determining if the flow rate is sufficient for a burner load of the combustion appliance. If the flow rate is sufficient for a burner load, a position of the valve member of the valve assembly and/or the burner load may be adjusted such that the flow rate of gas meets a target flow rate of gas for the current burner load. If the flow rate is insufficient to meet the current burner load, the valve member of the valve assembly may be positioned in a fully open position to at least partially meet the current burner load. If the flow rate is below a minimum flow rate threshold, the valve member may be moved to a fully closed position.
    Type: Application
    Filed: June 9, 2018
    Publication date: December 12, 2019
    Inventors: Willem Super, Jos Praat, Hans van der Mei, Frank van Prooijen
  • Publication number: 20190376688
    Abstract: A burner control system for improving burner performance and efficiency. The system may determine fuel and air channel or manifold parameters. Determination of parameters may be performed with a sensor connected across the air and fuel channels. A signal from the sensor may control the parameters which in turn affect the amounts of fuel and air to the burner via a controller. Parameter control of the fuel and air in their respective channels may result in more accurate fuel and air ratio control. One or more flow restrictors in fuel and/or air bypass channels may further improve accuracy of the fuel and air ratio. The channels may be interconnected with a pressure or flow divider. Byproducts of combustion in the exhaust, temperatures of gas and air, flame quality and/or other items may be monitored and adjusted with control of the fuel and air ratio for optimum combustion in the burner.
    Type: Application
    Filed: August 22, 2019
    Publication date: December 12, 2019
    Applicant: Honeywell International Inc.
    Inventors: Gregory Young, David Kucera, Donald J. Kasprzyk, Willem Super, Jos Praat, Roelof Thiewes, Hans M. van der Mei, Brian Zabel, John D. Mitchell
  • Publication number: 20190376828
    Abstract: Methods and systems for mitigating condensation in a sensor module of a combustion appliance are disclosed. In one example, a fluid flow from a main conduit is cooled with a passive heat exchanger. A sensor of a sensor module may be heated to a temperature above the cooled fluid flow. Cooling the incoming fluid flow with a passive heat exchanger and/or heating the downstream flow sensor may help mitigate condensation in the sensor module, and in particular, on the sensor device. This may help increase the reliability of the system.
    Type: Application
    Filed: June 9, 2018
    Publication date: December 12, 2019
    Inventors: David Kucera, Jos Praat, Hans van der Mei, Willem Super, Milos Trenz, Martin Bragg
  • Patent number: 10503181
    Abstract: The disclosure relates generally to pressure regulators, and more particularly, to pressure regulating valves. In one illustrative but non-limiting example, a pressure in a flow channel is translated into a position of a diaphragm, wherein the position of the diaphragm is dependent on the pressure in the flow channel. The position of the diaphragm is then sensed. A position of a valve in the flow channel is then controlled to adjust the pressure in the flow channel acting on the diaphragm so that the sensed position of the diaphragm is driven toward a predetermined position. This may result in regulated pressure in the fluid channel.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: December 10, 2019
    Assignee: Honeywell International Inc.
    Inventors: Gregory Young, David Kucera, Jos Praat, Donald J. Kasprzyk
  • Patent number: 10422531
    Abstract: A system for controlling activity in a combustion chamber. The system does not necessarily need to be mechanically adjusted and yet may provide precise control of a fuel air mixture ratio. A sensing module of the system may have a mass flow sensor that relates to air flow and another sensor that relates to fuel flow. Neither sensor may need contact with fuel. Fuel and air to the system may be controlled. Pressure of the fuel and/or air may be regulated. The sensors may provide signals to a processor to indicate a state of the fuel and air in the system. The processor, with reliance on a programmed curve, table or the like, often based on data, in a storage memory, may regulate the flow or pressure of the fuel and air in a parallel fashion to provide an appropriate fuel-air mixture to the combustion chamber.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: September 24, 2019
    Assignee: Honeywell International Inc.
    Inventors: Willem Super, Frank van Prooijen, David Kucera, Sybrandus Munsterhuis, Jos Praat
  • Patent number: 10203049
    Abstract: This disclosure relates generally to valves, and more particularly, to gas valve assemblies. In one illustrative but non-limiting example, a valve assembly may include a valve body, a valve situated in a fluid path of the valve body, a valve actuator for selectively moving the valve actuator, one or more sensors in communication with the fluid path, a controller secured relative to the valve body and in communication with the sensors, and memory operatively coupled to the controller. A user interface may be in communication with the memory and the controller and may be configured to receive a selection from a user for selecting one of two or more selectable options from the memory. The controller may compare sensed parameters to threshold values associated with the selected option. The user interface may have a lock on it to prevent tampering and to provide accountability.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: February 12, 2019
    Assignee: Honeywell International Inc.
    Inventors: David Kucera, Timothy McCarthy, Gregory Young, Donald J. Kasprzyk, Jos Praat, Carl Manoogian, Patrick Yuen
  • Patent number: 9841122
    Abstract: Valve assemblies may be configured to perform a valve proving test as part of an operational cycle of a combustion appliance coupled to the valve assembly. The valve assembly may include a valve body having a fluid path, first and second valves situated in the fluid path, first and second valve actuators, and a pressure sensor in fluid communication with an intermediate volume of the fluid path between the first and second valves. A valve controller may monitor a measure related to a pressure in the intermediate volume. The valve controller may then output a signal if the measure related to the pressure in the intermediate volume meets and/or exceeds a threshold value, where the threshold value is determined based on a measure related to an initial pressure in the intermediate volume and a known test duration.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: December 12, 2017
    Assignee: Honeywell International Inc.
    Inventors: David Kucera, Donald J. Kasprzyk, Gregory Young, Jos Praat, Pavel Kejik
  • Publication number: 20170254536
    Abstract: A system for controlling activity in a combustion chamber. The system does not necessarily need to be mechanically adjusted and yet may provide precise control of a fuel air mixture ratio. A sensing module of the system may have a mass flow sensor that relates to air flow and another sensor that relates to fuel flow. Neither sensor may need contact with fuel. Fuel and air to the system may be controlled. Pressure of the fuel and/or air may be regulated. The sensors may provide signals to a processor to indicate a state of the fuel and air in the system. The processor, with reliance on a programmed curve, table or the like, often based on data, in a storage memory, may regulate the flow or pressure of the fuel and air in a parallel fashion to provide an appropriate fuel-air mixture to the combustion chamber.
    Type: Application
    Filed: May 19, 2017
    Publication date: September 7, 2017
    Applicant: Honeywell International Inc.
    Inventors: Willem Super, Frank van Prooijen, David Kucera, Sybrandus Munsterhuis, Jos Praat
  • Publication number: 20170204990
    Abstract: This disclosure relates generally to valves, and more particularly, to gas valve assemblies. In one illustrative but non-limiting example, a valve assembly may include a valve body, a valve situated in a fluid path of the valve body, a valve actuator for selectively moving the valve actuator, one or more sensors in communication with the fluid path, a controller secured relative to the valve body and in communication with the sensors, and memory operatively coupled to the controller. A user interface may be in communication with the memory and the controller and may be configured to receive a selection from a user for selecting one of two or more selectable options from the memory. The controller may compare sensed parameters to threshold values associated with the selected option. The user interface may have a lock on it to prevent tampering and to provide accountability.
    Type: Application
    Filed: April 4, 2017
    Publication date: July 20, 2017
    Inventors: David Kucera, Timothy McCarthy, Gregory Young, Donald J. Kasprzyk, Jos Praat, Carl Manoogian, Patrick Yuen
  • Publication number: 20170199530
    Abstract: The disclosure relates generally to pressure regulators, and more particularly, to pressure regulating valves. In one illustrative but non-limiting example, a pressure in a flow channel is translated into a position of a diaphragm, wherein the position of the diaphragm is dependent on the pressure in the flow channel. The position of the diaphragm is then sensed. A position of a valve in the flow channel is then controlled to adjust the pressure in the flow channel acting on the diaphragm so that the sensed position of the diaphragm is driven toward a predetermined position. This may result in regulated pressure in the fluid channel.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Inventors: Gregory Young, David Kucera, Jos Praat, Donald J. Kasprzyk
  • Patent number: 9657946
    Abstract: A burner control system for improving burner performance and efficiency. The system may determine fuel and air channel or manifold parameters. Determination of parameters may be performed with a sensor connected across the air and fuel channels. A signal from the sensor may control the parameters which in turn affect the amounts of fuel and air to the burner via a controller. Parameter control of the fuel and air in their respective channels may result in more accurate fuel and air ratio control. One or more flow restrictors in fuel and/or air bypass channels may further improve accuracy of the fuel and air ratio. The channels may be interconnected with a pressure or flow divider. Byproducts of combustion in the exhaust, temperatures of gas and air, flame quality and/or other items may be monitored and adjusted with control of the fuel and air ratio for optimum combustion in the burner.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: May 23, 2017
    Assignee: Honeywell International Inc.
    Inventors: Gregory Young, David Kucera, Donald J. Kasprzyk, Willem Super, Jos Praat, Roelof Thiewes, Hans M. van der Mei, Brian Zabel, John D. Mitchell
  • Patent number: 9645584
    Abstract: This disclosure relates generally to valves, and more particularly, to gas valve assemblies. In one illustrative but non-limiting example, a valve assembly may include a valve body, a valve situated in a fluid path of the valve body, a valve actuator for selectively moving the valve actuator, one or more sensors in communication with the fluid path, a controller secured relative to the valve body and in communication with the sensors, and memory operatively coupled to the controller. A user interface may be in communication with the memory and the controller and may be configured to receive a selection from a user for selecting one of two or more selectable options from the memory. The controller may compare sensed parameters to threshold values associated with the selected option. The user interface may have a lock on it to prevent tampering and to provide accountability.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: May 9, 2017
    Assignee: Honeywell International Inc.
    Inventors: David Kucera, Timothy McCarthy, Gregory Young, Donald J. Kasprzyk, Jos Praat, Carl Manoogian, Patrick Yuen
  • Publication number: 20160123584
    Abstract: A burner control system for improving burner performance and efficiency. The system may determine fuel and air channel or manifold parameters. Determination of parameters may be performed with a sensor connected across the air and fuel channels. A signal from the sensor may control the parameters which in turn affect the amounts of fuel and air to the burner via a controller. Parameter control of the fuel and air in their respective channels may result in more accurate fuel and air ratio control. One or more flow restrictors in fuel and/or air bypass channels may further improve accuracy of the fuel and air ratio. The channels may be interconnected with a pressure or flow divider. Byproducts of combustion in the exhaust, temperatures of gas and air, flame quality and/or other items may be monitored and adjusted with control of the fuel and air ratio for optimum combustion in the burner.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Inventors: Gregory Young, David Kucera, Donald J. Kasprzyk, Willem Super, Jos Praat, Roelof Thiewes, Hans M. van der Mei, Brian Zabel, John D. Mitchell
  • Publication number: 20160077531
    Abstract: This disclosure relates generally to valves, and more particularly, to gas valve assemblies. In one illustrative but non-limiting example, a valve assembly may include a valve body, a valve situated in a fluid path of the valve body, a valve actuator for selectively moving the valve actuator, one or more sensors in communication with the fluid path, a controller secured relative to the valve body and in communication with the sensors, and memory operatively coupled to the controller. A user interface may be in communication with the memory and the controller and may be configured to receive a selection from a user for selecting one of two or more selectable options from the memory. The controller may compare sensed parameters to threshold values associated with the selected option. The user interface may have a lock on it to prevent tampering and to provide accountability.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 17, 2016
    Inventors: David Kucera, Timothy McCarthy, Gregory Young, Donald J. Kasprzyk, Jos Praat, Carl Manoogian, Patrick Yuen
  • Publication number: 20160069473
    Abstract: Valve assemblies may be configured to perform a valve proving test as part of an operational cycle of a combustion appliance coupled to the valve assembly. The valve assembly may include a valve body having a fluid path, first and second valves situated in the fluid path, first and second valve actuators, and a pressure sensor in fluid communication with an intermediate volume of the fluid path between the first and second valves. A valve controller may monitor a measure related to a pressure in the intermediate volume. The valve controller may then output a signal if the measure related to the pressure in the intermediate volume meets and/or exceeds a threshold value, where the threshold value is determined based on a measure related to an initial pressure in the intermediate volume and a known test duration.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 10, 2016
    Inventors: David Kucera, Donald J. Kasprzyk, Gregory Young, Jos Praat, Pavel Kejik
  • Patent number: 9234661
    Abstract: A burner control system for improving burner performance and efficiency. The system may determine fuel and air channel or manifold parameters. Determination of parameters may be performed with a sensor connected across the air and fuel channels. A signal from the sensor may control the parameters which in turn affect the amounts of fuel and air to the burner via a controller. Parameter control of the fuel and air in their respective channels may result in more accurate fuel and air ratio control. One or more flow restrictors in fuel and/or air bypass channels may further improve accuracy of the fuel and air ratio. The channels may be interconnected with a pressure or flow divider. Byproducts of combustion in the exhaust, temperatures of gas and air, flame quality and/or other items may be monitored and adjusted with control of the fuel and air ratio for optimum combustion in the burner.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: January 12, 2016
    Assignee: Honeywell International Inc.
    Inventors: Gregory Young, David Kucera, Donald J. Kasprzyk, Willem Super, Jos Praat, Roelof Thiewes, Hans van der Mei, Brian Zabel, John D. Mitchell
  • Patent number: 9074770
    Abstract: A valve assembly may be configured to perform a valve proving test as part of an operational cycle of a combustion appliance coupled to the valve assembly. The valve assembly may include a valve body having a fluid path, first and second valve sealing members translatable between an opened position and a closed position, and one or more pressure sensors in fluid communication with an intermediate volume of the fluid path between the first and second valve sealing members. A valve controller may be in communication with the pressure sensor and may monitor a measure related to a pressure change rate in the intermediate volume. The valve controller may then output a signal if the measure related to a pressure change rate in the intermediate volume meets and/or exceeds a threshold value.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: July 7, 2015
    Assignee: Honeywell International Inc.
    Inventors: Gregory Young, Donald J. Kasprzyk, David Kucera, Jos Praat