Patents by Inventor Jose Borrego

Jose Borrego has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10418502
    Abstract: The present invention relates to multi-cell devices fabricated on a common substrate that are more desirable than single cell devices, particularly in photovoltaic applications. Multi-cell devices operate with lower currents, higher output voltages, and lower internal power losses. Prior art multi-cell devices use physical isolation to achieve electrical isolation between cells. In order to fabricate a multicell device on a common substrate, the individual cells must be electrically isolated from one another. In the prior art, isolation generally required creating a physical dielectric barrier between the cells, which adds complexity and cost to the fabrication process. The disclosed invention achieves electrical isolation without physical isolation by proper orientation of interdigitated junctions such that the diffusion fields present in the interdigitated region essentially prevent the formation of a significant parasitic current which would be in opposition to the output of the device.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 17, 2019
    Assignee: MTPV Power Corporation
    Inventors: Eric Brown, Andrew Walsh, Jose Borrego, Paul Greiff
  • Patent number: 9884103
    Abstract: Disclosed are interactions between different betanodaviruses during infection of cells “in vitro” and in European sea bass. More specifically, fish administered striped jack nervous necrosis viruses (SJNNV), which are then exposed to red-spotted grouper nervous necrosis viruses (RGNNV), have fewer symptoms of disease associated with RGNNV and/or increased survival as compared to fish not administered SJNNV prior to exposure to RGNNV.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: February 6, 2018
    Assignee: Elanco Tiergesundheit AG
    Inventors: Juan Jose Borrego, Carlos Carballo Perez, Maria Del Carmen Alonso, Esther Garcia Rosado, Benjamin Lopez-Jimena, Jose F Rodriguez
  • Publication number: 20170338362
    Abstract: The present invention relates to multi-cell devices fabricated on a common substrate that are more desirable than single cell devices, particularly in photovoltaic applications. Multi-cell devices operate with lower currents, higher output voltages, and lower internal power losses. Prior art multi-cell devices use physical isolation to achieve electrical isolation between cells. In order to fabricate a multicell device on a common substrate, the individual cells must be electrically isolated from one another. In the prior art, isolation generally required creating a physical dielectric barrier between the cells, which adds complexity and cost to the fabrication process. The disclosed invention achieves electrical isolation without physical isolation by proper orientation of interdigitated junctions such that the diffusion fields present in the interdigitated region essentially prevent the formation of a significant parasitic current which would be in opposition to the output of the device.
    Type: Application
    Filed: August 11, 2017
    Publication date: November 23, 2017
    Applicant: MTPV Power Corporation
    Inventors: Eric Brown, Andrew Walsh, Jose Borrego, Paul Greiff
  • Patent number: 9755095
    Abstract: The present technology relates to multi-cell devices fabricated on a common substrate that are more desirable than single cell devices, particularly in photovoltaic applications. Multi-cell devices operate with lower currents, higher output voltages, and lower internal power losses. Prior art multi-cell devices use physical isolation to achieve electrical isolation between cells. In order to fabricate a multicell device on a common substrate, the individual cells must be electrically isolated from one another. In the prior art, isolation generally required creating a physical dielectric barrier between the cells, which adds complexity and cost to the fabrication process. The disclosed technology achieves electrical isolation without physical isolation by proper orientation of interdigitated junctions such that the diffusion fields present in the interdigitated region essentially prevent the formation of a significant parasitic current which would be in opposition to the output of the device.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 5, 2017
    Assignee: MTPV POWER CORPORATION
    Inventors: Eric Brown, Andrew Walsh, Jose Borrego, Paul Greiff
  • Publication number: 20160095915
    Abstract: Disclosed are interactions between different betanodaviruses during infection of cells “in vitro” and in European sea bass. More specifically, fish administered striped jack nervous necrosis viruses (SJNNV), which are then exposed to red-spotted grouper nervous necrosis viruses (RGNNV), have fewer symptoms of disease associated with RGNNV and/or increased survival as compared to fish not administered SJNNV prior to exposure to RGNNV.
    Type: Application
    Filed: May 26, 2014
    Publication date: April 7, 2016
    Applicant: Novartis Tiergesundheit AG
    Inventors: Juan Jose Borrego, Carlos Carballo Perez, Maria Del Carmen Alonso, Esther Garcia-Rosado, Benjamin Lopez-Jimena, Jose F Rodriguez
  • Publication number: 20140261618
    Abstract: The present invention relates to multi-cell devices fabricated on a common substrate that are more desirable than single cell devices, particularly in photovoltaic applications. Multi-cell devices operate with lower currents, higher output voltages, and lower internal power losses. Prior art multi-cell devices use physical isolation to achieve electrical isolation between cells. In order to fabricate a multicell device on a common substrate, the individual cells must be electrically isolated from one another. In the prior art, isolation generally required creating a physical dielectric barrier between the cells, which adds complexity and cost to the fabrication process. The disclosed invention achieves electrical isolation without physical isolation by proper orientation of interdigitated junctions such that the diffusion fields present in the interdigitated region essentially prevent the formation of a significant parasitic current which would be in opposition to the output of the device.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: MTPV Power Corporation
    Inventors: Eric Brown, Andrew Walsh, Jose Borrego, Paul Greiff