Patents by Inventor Jose Camara

Jose Camara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210291165
    Abstract: Provided herein, in some embodiments, are rapid diagnostic tests to detect one or more target nucleic acid sequences (e.g., a nucleic acid sequence of one or more pathogens). In some embodiments, the pathogens are viral, bacterial, fungal, parasitic, or protozoan pathogens, such as SARS-CoV-2 or an influenza virus. Further embodiments provide methods of detecting genetic abnormalities. Diagnostic tests comprising a sample-collecting component, one or more reagents (e.g., lysis reagents, nucleic acid amplification reagents), and a detection component (e.g., a component comprising a lateral flow assay strip and/or a colorimetric assay) are provided.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Applicant: Detect, Inc.
    Inventors: Jonathan M. Rothberg, Spencer Glantz, Benjamin Rosenbluth, Todd Roswech, Matthew Dyer, Jose Camara, Eric Kauderer-Abrams, Jonathan C. Schultz
  • Publication number: 20210291177
    Abstract: A reagent carrier includes: a cap configured to fit on an opening of a reaction vessel; and a reagent confined by the cap. The cap may be configured to release the reagent when a user manipulates the cap while the cap is fitted on the opening of the reaction vessel. For example, the reagent may be released when the user twists the cap from a first position to a second position or when the user pushes on a surface of the cap. The cap may be configured to seal the opening of the reaction vessel when the cap is fitted on the opening of the reaction vessel. In some implementations, the cap may be a blister cap containing the reagent. In some implementations, the cap may include a cage containing the reagent. In some implementations, the cap may include a deformable structure containing the reagent.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Applicant: Detect, Inc.
    Inventors: Jonathan M. Rothberg, Spencer Glantz, Benjamin Rosenbluth, Todd Roswech, Eric Kauderer-Abrams, Matthew Dyer, Jose Camara, Owen Kaye-Kauderer, John H. Leamon
  • Publication number: 20210277463
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Application
    Filed: May 7, 2021
    Publication date: September 9, 2021
    Applicant: Quantum-Si Invorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. File
  • Publication number: 20210138275
    Abstract: In some aspects, a device wearable by a person includes a sensor configured to detect a signal from the brain of the person and a transducer configured to apply to the brain an ultrasound signal. The ultrasound signal has a low power density and is substantially non-destructive with respect to tissue when applied to the brain.
    Type: Application
    Filed: December 13, 2019
    Publication date: May 13, 2021
    Applicant: EpilepsyCo Inc.
    Inventors: Eric Kabrams, Jose Camara, Owen Kaye-Kauderer, Alexander B. Leffell, Jonathan M. Rothberg, Maurizio Arienzo, Kamyar Firouzi
  • Publication number: 20200335933
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 10741990
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 11, 2020
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Publication number: 20200220317
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 9, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Publication number: 20200188700
    Abstract: In some aspects, a device wearable by or attached to or implanted within a person includes a sensor configured to detect an electroencephalogram (EEG) signal from the brain of the person and a transducer configured to apply to the brain a low power, substantially non-destructive ultrasound signal.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 18, 2020
    Applicant: EpilepsyCo Inc.
    Inventors: Eric Kabrams, Jose Camara, Owen Kaye-Kauderer, Alexander B. Leffell, Jonathan M. Rothberg, Kamyar Firouzi
  • Publication number: 20200194120
    Abstract: In some aspects, a device includes a sensor configured to detect a signal from the brain of the person and a first processor in communication with the sensor. The first processor is programmed to identify health condition and, based on the identified health condition, provide data from the signal to a second processor outside the device to corroborate or contradict the identified health condition.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 18, 2020
    Applicant: EpilepsyCo Inc.
    Inventors: Eric Kabrams, Jose Camara, Owen Kaye-Kauderer, Alexander B. Leffell, Jonathan M. Rothberg, Mohammad Moghadamfalahi
  • Publication number: 20200188698
    Abstract: In some aspects, a device wearable by a person includes a sensor configured to detect a signal from the brain of the person and a transducer configured to apply to the brain an ultrasound signal. The ultrasound signal has a low power density and is substantially non-destructive with respect to tissue when applied to the brain.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 18, 2020
    Applicant: EpilepsyCo Inc.
    Inventors: Eric Kabrams, Jose Camara, Owen Kaye-Kauderer, Alexander B. Leffell, Jonathan M. Rothberg, Maurizio Arienzo, Kamyar Firouzi
  • Publication number: 20200188697
    Abstract: In some aspects, a device wearable by or attached to or implanted within a person includes a sensor configured to detect a signal from the brain of the person and a transducer configured to apply to the brain an acoustic signal.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 18, 2020
    Applicant: EpilepsyCo Inc.
    Inventors: Eric Kabrams, Jose Camara, Owen Kaye-Kauderer, Alexander B. Leffell, Jonathan M. Rothberg, Maurizio Arienzo, Kamyar Firouzi
  • Publication number: 20200158640
    Abstract: Compact optical sources and methods for producing short and ultrashort optical pulses are described. A semiconductor laser or LED may be driven with a bipolar waveform to generate optical pulses with FWHM durations as short as approximately 85 ps having suppressed tail emission. The pulsed optical sources may be used for fluorescent lifetime analysis of biological samples and time-of-flight imaging, among other applications.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Brendan Huang, Paul E. Glenn, Jonathan C. Schultz, Jose Camara
  • Patent number: 10605730
    Abstract: Compact optical sources and methods for producing short and ultrashort optical pulses are described. A semiconductor laser or LED may be driven with a bipolar waveform to generate optical pulses with FWHM durations as short as approximately 85 ps having suppressed tail emission. The pulsed optical sources may be used for fluorescent lifetime analysis of biological samples and time-of-flight imaging, among other applications.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 31, 2020
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Brendan Huang, Paul E. Glenn, Jonathan C. Schultz, Jose Camara
  • Publication number: 20190249240
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 15, 2019
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Patent number: 10283928
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: May 7, 2019
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 10246742
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: April 2, 2019
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Publication number: 20180175582
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 9617594
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: April 11, 2017
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Publication number: 20160369332
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Publication number: 20160344156
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife