Patents by Inventor Jose Carlos Conchell ANO

Jose Carlos Conchell ANO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220211289
    Abstract: Systems and methods of monitoring electrodermal activity (EDA) in human subjects suitable for use in wearable electronic devices. An EDA monitoring system can include first and second dry electrodes, an alternating current (AC) excitation signal source, a trans-impedance amplifier, an analog-to-digital (A-to-D) converter, a discrete Fourier transform (DFT) processor, and a microprocessor. The AC excitation signal source can produce an AC excitation signal having a predetermined excitation frequency, such as about 100 or 120 Hertz (Hz). The analog-to-digital (A-to-D) converter can include a sample-and-hold circuit that operates at a predetermined sampling frequency, such as about four times (4×) the predetermined excitation frequency of 100 or 120 Hz. The DFT processor can generate complex frequency domain representations of digitized, sampled voltage level sequences provided by the A-to-D converter for use in obtaining measures of a user's skin impedance or skin conductance.
    Type: Application
    Filed: January 17, 2022
    Publication date: July 7, 2022
    Applicant: Analog Devices International Unlimited Company
    Inventor: José Carlos Conchell Añó
  • Patent number: 11224354
    Abstract: Systems and methods of monitoring electrodermal activity (EDA) in human subjects suitable for use in wearable electronic devices. An EDA monitoring system can include first and second dry electrodes, an alternating current (AC) excitation signal source, a trans-impedance amplifier, an analog-to-digital (A-to-D) converter, a discrete Fourier transform (DFT) processor, and a microprocessor. The AC excitation signal source can produce an AC excitation signal having a predetermined excitation frequency, such as about 100 or 120 Hertz (Hz). The analog-to-digital (A-to-D) converter can include a sample-and-hold circuit that operates at a predetermined sampling frequency, such as about four times (4×) the predetermined excitation frequency of 100 or 120 Hz. The DFT processor can generate complex frequency domain representations of digitized, sampled voltage level sequences provided by the A-to-D converter for use in obtaining measures of a user's skin impedance or skin conductance.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: January 18, 2022
    Inventor: José Carlos Conchell Añó
  • Publication number: 20210325328
    Abstract: Accurately measuring bio-impedance is important for sensing properties of the body. Unfortunately, contact impedances can significantly degrade the accuracy of bio-impedance measurements. To address this issue, circuitry for implementing a four-wire impedance measurement can be configured to make multiple current measurements. The multiple current measurements set up a system of equations to allow the unknown bio-impedance and contact impedances to be derived. The result is an accurate bio-impedance measurement that is not negatively impacted by large contact impedances. Moreover, bad contacts with undesirably large impedances can be identified.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Applicant: Analog Devices International Unlimited Company
    Inventors: Jose Carlos Conchell ANO, Javier CALPE MARAVILLA, Liam Patrick RIORDAN
  • Patent number: 11047821
    Abstract: Accurately measuring bio-impedance is important for sensing properties of the body. Unfortunately, contact impedances can significantly degrade the accuracy of bio-impedance measurements. To address this issue, circuitry for implementing a four-wire impedance measurement can be configured to make multiple current measurements. The multiple current measurements set up a system of equations to allow the unknown bio-impedance and contact impedances to be derived. The result is an accurate bio-impedance measurement that is not negatively impacted by large contact impedances. Moreover, bad contacts with undesirably large impedances can be identified.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: June 29, 2021
    Assignee: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY
    Inventors: Jose Carlos Conchell Ano, Javier Calpe Maravilla, Liam Patrick Riordan
  • Patent number: 10702184
    Abstract: Various examples are directed to a measurement system for measuring an electrical property of skin comprising an excitation circuit, a receiver circuit, and a sequencer circuit. The excitation circuit may generate a periodic excitation signal that, when provided to the skin, generates a response signal in the skin indicative of the electrical property. The sequencer circuit may be configured to activate the excitation circuit to provide the excitation signal to the skin. While the excitation circuit is activated to provide the excitation signal to the skin, the sequencer circuit may activate the receiver circuit to execute a first sample cycle to generate a first plurality of samples of the response signal. A first value for the electrical property of the skin may be determined based at least in part on the first plurality of samples of the response signal.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: July 7, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventors: Liam Riordan, José Carlos Conchell Añó, Tony Shi, Guangyang Qu, Hanqing Wang
  • Publication number: 20200096463
    Abstract: Accurately measuring bio-impedance is important for sensing properties of the body. Unfortunately, contact impedances can significantly degrade the accuracy of bio-impedance measurements. To address this issue, circuitry for implementing a four-wire impedance measurement can be configured to make multiple current measurements. The multiple current measurements set up a system of equations to allow the unknown bio-impedance and contact impedances to be derived. The result is an accurate bio-impedance measurement that is not negatively impacted by large contact impedances. Moreover, bad contacts with undesirably large impedances can be identified.
    Type: Application
    Filed: April 3, 2019
    Publication date: March 26, 2020
    Applicant: Analog Devices Global Unlimited Company
    Inventors: Jose Carlos Conchell ANO, Javier CALPE MARAVILLA, Liam Patrick RIORDAN
  • Publication number: 20180353100
    Abstract: Various examples are directed to a measurement system for measuring an electrical property of skin comprising an excitation circuit, a receiver circuit, and a sequencer circuit. The excitation circuit may generate a periodic excitation signal that, when provided to the skin, generates a response signal in the skin indicative of the electrical property. The sequencer circuit may be configured to activate the excitation circuit to provide the excitation signal to the skin. While the excitation circuit is activated to provide the excitation signal to the skin, the sequencer circuit may activate the receiver circuit to execute a first sample cycle to generate a first plurality of samples of the response signal. A first value for the electrical property of the skin may be determined based at least in part on the first plurality of samples of the response signal.
    Type: Application
    Filed: June 7, 2017
    Publication date: December 13, 2018
    Inventors: Liam Riordan, José Carlos Conchell Añó, Tony Shi, Guangyang Qu, Hanqing Wang
  • Publication number: 20180035910
    Abstract: Systems and methods of monitoring electrodermal activity (EDA) in human subjects suitable for use in wearable electronic devices. An EDA monitoring system can include first and second dry electrodes, an alternating current (AC) excitation signal source, a trans-impedance amplifier, an analog-to-digital (A-to-D) converter, a discrete Fourier transform (DFT) processor, and a microprocessor. The AC excitation signal source can produce an AC excitation signal having a predetermined excitation frequency, such as about 100 or 120 Hertz (Hz). The analog-to-digital (A-to-D) converter can include a sample-and-hold circuit that operates at a predetermined sampling frequency, such as about four times (4×) the predetermined excitation frequency of 100 or 120 Hz. The DFT processor can generate complex frequency domain representations of digitized, sampled voltage level sequences provided by the A-to-D converter for use in obtaining measures of a user's skin impedance or skin conductance.
    Type: Application
    Filed: August 8, 2016
    Publication date: February 8, 2018
    Inventor: José Carlos Conchell Añó