Patents by Inventor Jose E. Herrera

Jose E. Herrera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11376011
    Abstract: An embodiment provides a method for normalizing cardiac venous return, including: inserting percutaneously a calibrated balloon catheter through a femoral vein; advancing the calibrated balloon catheter to the inferior vena cava; and placing a balloon portion of the calibrated balloon catheter at a location before the drainage point of the hepatic vein.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: July 5, 2022
    Inventors: José E. Herrera, José A. Herrera
  • Publication number: 20210100559
    Abstract: An embodiment provides a method for normalizing cardiac venous return, including: inserting percutaneously a calibrated balloon catheter through a femoral vein; advancing the calibrated balloon catheter to the inferior vena cava; and placing a balloon portion of the calibrated balloon catheter at a location before the drainage point of the hepatic vein. Other aspects are described and claimed.
    Type: Application
    Filed: October 3, 2019
    Publication date: April 8, 2021
    Inventors: José E. Herrera, José A. Herrera
  • Patent number: 9820750
    Abstract: This invention relates to a method that comprises the introduction of a catheter via left subclavian vein, advancing into the right atrium and then positioning it in the inferior vena cava, just at the cava-diaphragm junction, where it is anchored at its extreme; and thereafter an external inflation of a balloon positioned in said catheter takes place through a physiological solution to reach a diameter corresponding to half the diameter of the inferior vena cava, resulting in hemi-occlusion in the expiration phase (breath-out) and total occlusion for a short period during the inspiration phase (breath-in), regulating (normalizing) the venous return and decreasing the cardiac volume overload, as a treatment for heart failure. The invention also comprises hydromechanics devices to normalize the venous return in the circulatory system. Said venous return is increased in 90% of patients with heart failure.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: November 21, 2017
    Inventor: Jose E. Herrera
  • Publication number: 20150265285
    Abstract: This invention relates to a method that comprises the introduction of a catheter via left subclavian vein, advancing into the right atrium and then positioning it in the inferior vena cava, just at the cava-diaphragm junction, where it is anchored at its extreme; and thereafter an external inflation of a balloon positioned in said catheter takes place through a physiological solution to reach a diameter corresponding to half the diameter of the inferior vena cava, resulting in hemi-occlusion in the expiration phase (breath-out) and total occlusion for a short period during the inspiration phase (breath-in), regulating (normalizing) the venous return and decreasing the cardiac volume overload, as a treatment for heart failure. The invention also comprises hydromechanics devices to normalize the venous return in the circulatory system. Said venous return is increased in 90% of patients with heart failure.
    Type: Application
    Filed: March 2, 2015
    Publication date: September 24, 2015
    Inventor: Jose E. Herrera
  • Patent number: 8968239
    Abstract: This invention relates to a method that comprises the introduction of a catheter via left subclavian vein, advancing into the right atrium and then positioning it in the inferior vena cava, just at the cava-diaphragm junction, where it is anchored at its extreme; and thereafter an external inflation of a balloon positioned in said catheter takes place through a physiological solution to reach a diameter corresponding to half the diameter of the inferior vena cava, resulting in hemi-occlusion in the expiration phase (breath-out) and total occlusion for a short period during the inspiration phase (breath-in), regulating (normalizing) the venous return and decreasing the cardiac volume overload, as a treatment for heart failure. The invention also comprises hydromechanics devices to normalize the venous return in the circulatory system. Said venous return is increased in 90% of patients with heart failure.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: March 3, 2015
    Inventor: Jose E. Herrera
  • Patent number: 8834414
    Abstract: This invention relates to a method that comprises the introduction of a catheter via left subclavian vein, advancing into the right atrium and then positioning it in the inferior vena cava, just at the cava-diaphragm junction, where it is anchored at its extreme; and thereafter an external inflation of a balloon positioned in said catheter takes place through a physiological solution to reach a diameter corresponding to half the diameter of the inferior vena cava, resulting in hemi-occlusion in the expiration phase (breath-out) and total occlusion for a short period during the inspiration phase (breath-in), regulating (normalizing) the venous return and decreasing the cardiac volume overload, as a treatment for heart failure. The invention also comprises hydromechanics devices to normalize the venous return in the circulatory system. Said venous return is increased in 90% of patients with heart failure.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: September 16, 2014
    Inventor: Jose E. Herrera
  • Patent number: 7357907
    Abstract: A catalyst composition and method of use of the catalyst composition for producing single-walled carbon nanotubes (SWNTs). The catalyst is cobalt (Co) and molybdenum (Mo) on a silica support. The Mo occurs primarily as dispersed Mo oxide clusters on the support while the Co is primarily in an octahedral configuration in a CoMoO4-like phase disposed on the Mo oxide clusters. In the method, the catalyst is used and the process conditions manipulated in such a manner as to enable the diameters of the SWNTs to be substantially controlled.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: April 15, 2008
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Daniel E. Resasco, Walter E. Alvarez, Jose E. Herrera, Leandro Balzano
  • Patent number: 7354881
    Abstract: A catalyst composition and method of use of the catalyst composition for producing single-walled carbon nanotubes (SWNTs). The catalyst is cobalt (Co) and molybdenum (Mo) on a silica support. The Mo occurs primarily as dispersed Mo oxide clusters on the support while the Co is primarily in an octahedral configuration in a CoMoO4-like phase disposed on the Mo oxide clusters. In the method, the catalyst is used and the process conditions manipulated in such a manner as to enable the diameters of the SWNTs to be substantially controlled.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: April 8, 2008
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Daniel E. Resasco, Walter E. Alvarez, Jose E. Herrera, Leandro Balzano
  • Publication number: 20040197260
    Abstract: A catalyst composition and method of use of the catalyst composition for producing single-walled carbon nanotubes (SWNTs). The catalyst is cobalt (Co) and molybdenum (Mo) on a silica support. The Mo occurs primarily as dispersed Mo oxide clusters on the support while the Co is primarily in an octahedral configuration in a CoMoO4-like phase disposed on the Mo oxide clusters. In the method, the catalyst is used and the process conditions manipulated in such a manner as to enable the diameters of the SWNTs to be substantially controlled.
    Type: Application
    Filed: October 20, 2003
    Publication date: October 7, 2004
    Inventors: Daniel E. Resasco, Walter E. Alvarez, Jose E. Herrera, Leandro Balzano
  • Publication number: 20040131532
    Abstract: A catalyst composition and method of use of the catalyst composition for producing single-walled carbon nanotubes (SWNTs). The catalyst is cobalt (Co) and molybdenum (Mo) on a silica support. The Mo occurs primarily as dispersed Mo oxide clusters on the support while the Co is primarily in an octahedral configuration in a CoMoO4-like phase disposed on the Mo oxide clusters. In the method, the catalyst is used and the process conditions manipulated in such a manner as to enable the diameters of the SWNTs to be substantially controlled.
    Type: Application
    Filed: November 24, 2003
    Publication date: July 8, 2004
    Inventors: Daniel E. Resasco, Walter E. Alvarez, Jose E. Herrera, Leandro Balzano
  • Publication number: 20030091496
    Abstract: A catalyst composition and method of use of the catalyst composition for producing single-walled carbon nanotubes (SWNTs). The catalyst is cobalt (Co) and molybdenum (Mo) on a silica support. The Mo occurs primarily as dispersed Mo oxide clusters on the support while the Co is primarily in an octahedral configuration in a CoMoO4-like phase disposed on the Mo oxide clusters. In the method, the catalyst is used and the process conditions manipulated in such a manner as to enable the diameters of the SWNTs to be substantially controlled.
    Type: Application
    Filed: April 8, 2002
    Publication date: May 15, 2003
    Inventors: Daniel E. Resasco, Walter E. Alvarez, Jose E. Herrera, Leandro Balzano
  • Patent number: 4392987
    Abstract: Small size alumina particles of controlled sizes suitable for use as a catalyst support can be made from an acidified alumina slurry by spraying under nonatomizing conditions from a nozzle with a gas or inert fluid used to disperse the slurry into small droplets. The droplets can either be sent through an ammoniated kerosene column or the acidified slurry can be spray dried. Small alumina spheroids are produced, which after calcination, have controlled size diameters from about 0.01 mm. to about 2.0 mm.
    Type: Grant
    Filed: December 30, 1981
    Date of Patent: July 12, 1983
    Assignee: W. R. Grace & Co.
    Inventors: Norman R. Laine, Jose E. Herrera
  • Patent number: 4301037
    Abstract: A thermally stable, pure transition alumina extrudate suitable for use as a catalyst support has a uniquely defined bimodal pore size distribution and very good mechanical properties. Most of the surface area is in a micropore region having pores of less than 500 Angstrom units, a pore volume of 0.60 to 0.80 cm..sup.3 /g., a narrowly defined effective pore volume distribution within this region and a median pore diameter which can be controlled within the range of 90-210 Angstrom units. The macropore region made of pores having diameters of 1,000- 10,000 Angstrom units has a pore volume of at least 0.10 cm..sup.3 /g. These two pore volumes are essentially connected directly to each other. The extrudates can be strengthened by acidic additives and given increased thermal stability by adding rare earth oxides.
    Type: Grant
    Filed: April 1, 1980
    Date of Patent: November 17, 1981
    Assignee: W. R. Grace & Co.
    Inventors: Moises G. Sanchez, Jose E. Herrera