Patents by Inventor Jose FERNANDEZ-ALCON

Jose FERNANDEZ-ALCON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093136
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher Davidd Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20240084235
    Abstract: An organomimetic device includes a microfluidic device that can be used to culture cells in its microfluidic channels. The organomimetic device can be part of dynamic system that can apply mechanical forces to the cells by modulating the microfluidic device and the flow of fluid through the microfluidic channels. The membrane in the organomimetic device can be modulated mechanically via pneumatic means and/or mechanical means. The organomimetic device can be manufactured by the fabrication of individual components separately, for example, as individual layers that can be subsequently laminated together.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 14, 2024
    Inventors: Jose Fernandez-Alcon, Norman Wen, Richard Novak, Donald E. Ingber, Geraldine A. Hamilton, Christopher Hinojosa, Karel Domansky, Daniel Levner, Guy Thompson, II, Kambez Hajipouran Benam, Remi Villenave, Thomas Umundum, Alfred Paris, Georg Bauer
  • Patent number: 11920114
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: March 5, 2024
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 11834641
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: December 5, 2023
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20230022203
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: September 22, 2022
    Publication date: January 26, 2023
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20220372423
    Abstract: Systems and methods interconnect cell culture devices and/or fluidic devices by transferring discrete volumes of fluid between devices. A liquid-handling system collects a volume of fluid from at least one source device and deposits the fluid into at least one destination device. In some embodiments, a liquid-handling robot actuates the movement and operation of a fluid collection device in an automated manner to transfer the fluid between the at least one source device and the at least one destination device. In some cases, the at least one source device and the at least one destination device are cell culture devices. The at least one source device and the at least one destination device may be microfluidic or non-microfluidic devices. In some cases, the cell culture devices may be microfluidic cell culture devices. In further cases, the microfluidic cell culture devices may include organ-chips.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 24, 2022
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Daniel LEVNER, Guy THOMPSON, III, Jose FERNANDEZ-ALCON, Christopher David HINOJOSA
  • Publication number: 20220364030
    Abstract: Systems and methods for improved flow properties in fluidic and microfluidic systems are disclosed. The system includes a microfluidic device having a first microchannel, a fluid reservoir having a working fluid and a pressurized gas, a pump in communication with the fluid reservoir to maintain a desired pressure of the pressurized gas, and a fluid-resistance element located within a fluid path between the fluid reservoir and the first microchannel. The fluid-resistance element includes a first fluidic resistance that is substantially larger than a second fluidic resistance associated with the first microchannel.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Inventors: Christopher David Hinojosa, Josiah Sliz, Daniel Levner, Guy Thompson, Hubert Geisler, Jose Fernandez-Alcon, Donald E. Ingber
  • Patent number: 11499131
    Abstract: Systems and methods interconnect cell culture devices and/or fluidic devices by transferring discrete volumes of fluid between devices. A liquid-handling system collects a volume of fluid from at least one source device and deposits the fluid into at least one destination device. In some embodiments, a liquid-handling robot actuates the movement and operation of a fluid collection device in an automated manner to transfer the fluid between the at least one source device and the at least one destination device. In some cases, the at least one source device and the at least one destination device are cell culture devices. The at least one source device and the at least one destination device may be microfluidic or non-microfluidic devices. In some cases, the cell culture devices may be microfluidic cell culture devices. In further cases, the microfluidic cell culture devices may include organ-chips.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: November 15, 2022
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Daniel Levner, Guy Thompson, II, Jose Fernandez-Alcon, Christopher David Hinojosa
  • Patent number: 11434458
    Abstract: Systems and methods for improved flow properties in fluidic and microfluidic systems are disclosed. The system includes a microfluidic device having a first microchannel, a fluid reservoir having a working fluid and a pressurized gas, a pump in communication with the fluid reservoir to maintain a desired pressure of the pressurized gas, and a fluid-resistance element located within a fluid path between the fluid reservoir and the first microchannel. The fluid-resistance element includes a first fluidic resistance that is substantially larger than a second fluidic resistance associated with the first microchannel.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: September 6, 2022
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Christopher David Hinojosa, Josiah Sliz, Daniel Levner, Guy Thompson, Hubert Geisler, Jose Fernandez-Alcon, Donald E. Ingber
  • Publication number: 20210179992
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: February 16, 2021
    Publication date: June 17, 2021
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 11034926
    Abstract: Systems and methods for improved flow properties in fluidic and microfluidic systems are disclosed. The system includes a microfluidic device having a first microchannel, a fluid reservoir having a working fluid and a pressurized gas, a pump in communication with the fluid reservoir to maintain a desired pressure of the pressurized gas, and a fluid-resistance element located within a fluid path between the fluid reservoir and the first microchannel. The fluid-resistance element includes a first fluidic resistance that is substantially larger than a second fluidic resistance associated with the first microchannel.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: June 15, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Christopher David Hinojosa, Josiah Sliz, Daniel Levner, Guy Thompson, Hubert Geisler, Jose Fernandez-Alcon, Donald E. Ingber
  • Patent number: 10988721
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: April 27, 2021
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 10913924
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: February 9, 2021
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20200277558
    Abstract: Systems and methods interconnect cell culture devices and/or fluidic devices by transferring discrete volumes of fluid between devices. A liquid-handling system collects a volume of fluid from at least one source device and deposits the fluid into at least one destination device. In some embodiments, a liquid-handling robot actuates the movement and operation of a fluid collection device in an automated manner to transfer the fluid between the at least one source device and the at least one destination device. In some cases, the at least one source device and the at least one destination device are cell culture devices. The at least one source device and the at least one destination device may be microfluidic or non-microfluidic devices. In some cases, the cell culture devices may be microfluidic cell culture devices. In further cases, the microfluidic cell culture devices may include organ-chips.
    Type: Application
    Filed: October 4, 2019
    Publication date: September 3, 2020
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Daniel Levner, Guy Thompson, II, Jose Fernandez-Alcon, Christopher David Hinojosa
  • Patent number: 10465158
    Abstract: Systems and methods interconnect cell culture devices and/or fluidic devices by transferring discrete volumes of fluid between devices. A liquid-handling system collects a volume of fluid from at least one source device and deposits the fluid into at least one destination device. In some embodiments, a liquid-handling robot actuates the movement and operation of a fluid collection device in an automated manner to transfer the fluid between the at least one source device and the at least one destination device. In some cases, the at least one source device and the at least one destination device are cell culture devices. The at least one source device and the at least one destination device may be microfluidic or non-microfluidic devices. In some cases, the cell culture devices may be microfluidic cell culture devices. In further cases, the microfluidic cell culture devices may include organ-chips.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: November 5, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Donald E. Ingber, Daniel Levner, Guy Thompson, II, Jose Fernandez-Alcon, Christopher David Hinojosa
  • Patent number: 10407655
    Abstract: Systems and methods for improved flow properties in fluidic and microfluidic systems are disclosed. The system includes a microfluidic device having a first microchannel, a fluid reservoir having a working fluid and a pressurized gas, a pump in communication with the fluid reservoir to maintain a desired pressure of the pressurized gas, and a fluid-resistance element located within a fluid path between the fluid reservoir and the first microchannel. The fluid-resistance element includes a first fluidic resistance that is substantially larger than a second fluidic resistance associated with the first microchannel.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: September 10, 2019
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Christopher David Hinojosa, Josiah Sliz, Daniel Levner, Guy Thompson, Hubert Geisler, Jose Fernandez-Alcon, Donald E. Ingber
  • Publication number: 20190040349
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20190040348
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 10184102
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 22, 2019
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20170327781
    Abstract: An organomimetic device includes a microfluidic device that can be used to culture cells in its microfluidic channels. The organomimetic device can be part of dynamic system that can apply mechanical forces to the cells by modulating the microfluidic device and the flow of fluid through the microfluidic channels. The membrane in the organomimetic device can be modulated mechanically via pneumatic means and/or mechanical means. The organomimetic device can be manufactured by the fabrication of individual components separately, for example, as individual layers that can be subsequently laminated together.
    Type: Application
    Filed: May 22, 2017
    Publication date: November 16, 2017
    Inventors: Jose Fernandez-Alcon, Norman Wen, Richard Novak, Donald E. Ingber, Geraldine A. Hamilton, Christopher Hinojosa, Karel Domansky, Daniel Levner, Guy Thompson, Kambez Hajipouran Benam, Remi Villenave, Thomas Umundum, Alfred Paris, Georg Bauer