Patents by Inventor Jose Fernando Cevallos-Candau

Jose Fernando Cevallos-Candau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9975968
    Abstract: The invention relates to a system for the continuous polymerization of ?-olefin monomers comprising a reactor, a compressor, a cooling unit and an external pipe, wherein the reactor comprises a first outlet for a top recycle stream, wherein the system comprises apparatus, wherein the reactor comprises a first inlet for receiving a bottom recycle stream, wherein the reactor comprises an integral separator, wherein the first inlet of the integral separator is connected to a first outlet, wherein the first outlet for the liquid phase is connected to the second outlet of the reactor for the liquid phase, wherein the external pipe comprises a second inlet for receiving a solid polymerization catalyst, wherein the first outlet of the external pipe is connected to a second inlet of the reactor, wherein the reactor comprises a third outlet, wherein the system comprises a first inlet for receiving a feed.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: May 22, 2018
    Assignees: SABIC GLOBAL TECHNOLOGIES B.V., SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Yahya Banat, Jose Fernando Cevallos-Candau
  • Patent number: 9637572
    Abstract: The invention relates to a process for the continuous polymerization of one or more a-olefin monomers of which at least one is ethylene or propylene comprising the steps of: (1) feeding the one or more a-olefins to a vertically extended reactor suitable for the continuous fluidized bed polymerization of one or more a-olefin monomers of which at least one is ethylene or propylene, which reactor is operable in condensed mode, wherein the reactor comprises a distribution plate and an integral gas/liquid separator located below the distribution plate, (2) withdrawing the polyolefin from the reactor (3) withdrawing fluids from the top of the reactor, (4) cooling the fluids to below their dew point, resulting in a bottom recycle stream, (5) introducing the bottom recycle stream under the distribution plate, (6) separating at least part of the liquid from the bottom recycle stream using the integral separator to form a liquid phase and a gas/liquid phase, (7) feeding the liquid phase to an external pipe, (8) adding
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: May 2, 2017
    Assignees: SABIC GLOBAL TECHNOLOGIES B.V., SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Yahya Banat, Jose Fernando Cevallos-Candau
  • Patent number: 9611342
    Abstract: The invention relates to a multi-zone reactor for the continuous fluidized bed polymerization of one or more ?-olefin monomers of which at least one is ethylene or propylene, which multi-zone reactor is operable in condensed mode, which multi-zone reactor comprises a first zone, a second zone, a third zone, a fourth zone and a distribution plate, wherein the second zone contains an inner wall, wherein the third zone contains an inner wall, wherein at least part of the inner wall of the third zone is either in the form of a gradually increasing inner diameter or a continuously opening cone, wherein the diameter or the opening increases in the vertical direction towards the top of the multi-zone reactor, wherein the largest diameter of the inner wall of the third zone is larger than the largest diameter of the inner wall of the second zone.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 4, 2017
    Assignees: SABIC GLOBAL TECHNOLOGIES B.V., SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Yahya Banat, Jose Fernando Cevallos-Candau
  • Publication number: 20170002113
    Abstract: The invention relates to a system for the continuous polymerization of ?-olefin monomers comprising a reactor, a compressor, a cooling unit and an external pipe, wherein the reactor comprises a first outlet for a top recycle stream, wherein the system comprises apparatus, wherein the reactor comprises a first inlet for receiving a bottom recycle stream, wherein the reactor comprises an integral separator, wherein the first inlet of the integral separator is connected to a first outlet, wherein the first outlet for the liquid phase is connected to the second outlet of the reactor for the liquid phase, wherein the external pipe comprises a second inlet for receiving a solid polymerization catalyst, wherein the first outlet of the external pipe is connected to a second inlet of the reactor, wherein the reactor comprises a third outlet, wherein the system comprises a first inlet for receiving a feed.
    Type: Application
    Filed: November 24, 2014
    Publication date: January 5, 2017
    Inventors: Yahya Banat, Jose Fernando Cevallos-Candau
  • Publication number: 20160297899
    Abstract: The invention relates to a process for the continuous polymerization ?-olefin monomers comprising: feeding the ?-olefins to a vertically extended reactor for the continuous fluidized bed polymerization of ?-olefin monomers, wherein the reactor comprises a distribution plate and an integral gas/liquid separator, withdrawing the polyolefin from the reactor, withdrawing fluids from the reactor, cooling the fluids to below their dew point, resulting in a bottom recycle stream, (5) introducing the bottom recycle stream, separating at least part of the liquid from the bottom recycle stream, feeding a liquid phase to an external pipe, adding a solid polymerization catalyst to the liquid phase in the external pipe and (9) feeding a slurry stream comprising the prepolymer and/or polymer into the reactor, wherein the prepolymer and/or polymer are present in the slurry stream in an amount of 0.01 to 99 wt % based on the total slurry stream upon introduction into the reactor.
    Type: Application
    Filed: November 24, 2014
    Publication date: October 13, 2016
    Inventors: Yahya Banat, Jose Fernando Cevallos-Candau
  • Publication number: 20160297900
    Abstract: The invention relates to a multi-zone reactor for the continuous fluidized bed polymerization of one or more ?-olefin monomers of which at least one is ethylene or propylene, which multi-zone reactor is operable in condensed mode, which multi-zone reactor comprises a first zone, a second zone, a third zone, a fourth zone and a distribution plate, wherein the second zone contains an inner wall, wherein the third zone contains an inner wall, wherein at least part of the inner wall of the third zone is either in the form of a gradually increasing inner diameter or a continuously opening cone, wherein the diameter or the opening increases in the vertical direction towards the top of the multi-zone reactor, wherein the largest diameter of the inner wall of the third zone is larger than the largest diameter of the inner wall of the second zone.
    Type: Application
    Filed: November 24, 2014
    Publication date: October 13, 2016
    Inventors: Yahya Banat, Jose Fernando Cevallos-Candau
  • Publication number: 20150119538
    Abstract: The invention relates to a process for the production of polyethylene by gas phase polymerisation of ethylene in the presence of a supported chromium oxide based catalyst which is modified with an amino alcohol wherein the molar ratio of amino alcohol:chromium ranges between 0.5:1 and 1:1, wherein the support is silica having a surface area (SA) between 250 m2/g and 400 m2/g and a pore volume (PV) between 1.1 cm3/g and less than 2.0 cm3/g and wherein the amount of chromium in the supported catalyst is at least 0.1% by weight and less than 0.5% by weight.
    Type: Application
    Filed: June 11, 2013
    Publication date: April 30, 2015
    Applicant: Saudi Basic Industries Corporation
    Inventors: Vugar O. Aliyev, Jose Fernando Cevallos-Candau
  • Publication number: 20130337210
    Abstract: The disclosed process is for the production of polyethylene by gas phase polymerisation of ethylene in the presence of a supported chromium oxide based catalyst which is modified with an amino alcohol wherein the molar ratio of amino alcohol:chromium ranges between 0.5:1 and 1:1, wherein the support is silica having a surface area (SA) between 250 m2/g and 400 m2/g and a pore volume (PV) between 1.1 cm3/g and less than 2.0 cm3/g and wherein the amount of chromium in the supported catalyst is at least 0.1% by weight and less than 0.5% by weight.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Inventors: Vugar O. Aliyev, Jose Fernando Cevallos-Candau
  • Patent number: 8420754
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: April 16, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Publication number: 20110060111
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Application
    Filed: November 11, 2010
    Publication date: March 10, 2011
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, JR., Maria Apecetche
  • Publication number: 20090312506
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 17, 2009
    Applicant: UNIVATION TECHNOLOGIES, LLC.
    Inventors: Kevin J. Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John H. Moorhouse, Mark G. Goode, Daniel P. Zilker, JR., Maria Apecetche
  • Patent number: 7563851
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: July 21, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Patent number: 7504463
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: March 17, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Patent number: 7202313
    Abstract: A process for polymerizing polyethylene with chromium-based catalysts wherein one or more supported chromium-based catalysts is mixed with mineral oil to form a slurry and the slurry is then introduced into a polymerization reactor, especially a gas-phase polymerization reactor.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: April 10, 2007
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Robert J. Jorgensen, Karen E. Breetz, Jose Fernando Cevallos-Candau, Dale A. Wright, Thomas E. Spriggs
  • Patent number: 6989344
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: January 24, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Patent number: 6841630
    Abstract: Processes for transitioning among polymerization catalyst systems, preferably catalyst systems, which are incompatible with each other. Particularly, processes for transitioning among olefin polymerization reactions utilizing silyl-chromate catalyst systems and metallocene catalyst systems.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: January 11, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Kersten Anne Terry, Mark Gregory Goode, Daniel E. Wente, John Chirillo, Jr., Simon Mawson, Jose Fernando Cevallos-Candau
  • Publication number: 20040143076
    Abstract: Processes for transitioning among polymerization catalyst systems, preferably catalyst systems, which are incompatible with each other. Particularly, processes for transitioning among olefin polymerization reactions utilizing silyl-chromate catalyst systems and metallocene catalyst systems.
    Type: Application
    Filed: November 17, 2003
    Publication date: July 22, 2004
    Inventors: Kersten Anne Terry, Mark Gregory Goode, Daniel E. Wente, John Chirillo, Simon Mawson, Jose Fernando Cevallos-Candau
  • Patent number: 5783645
    Abstract: A colorable resin particle having an outer shell of a non-sticky polymer and an inner core of a sticky polymer produced in a gas phase fluidized bed reactor at or above the sticking temperature of the sticky polymer using a non-sticky prepolymerized catalyst and processes for producing the colorable resin and the non-sticky prepolymerized catalyst.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: July 21, 1998
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Edgar Chapman Baker, Jose Fernando Cevallos-Candau, Eric Allan Lucas, John Gregory Victor, Allan Noshay