Patents by Inventor Jose Guitian

Jose Guitian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7955497
    Abstract: A method for separating and recovering ultrafine particulate solid material from a suspension or slurry of the solid material and a hydrocarbon liquid by precipitation or flocculation of a heavy fraction of the hydrocarbon liquid with an effective amount of a precipitation or flocculation agent such that the precipitated heavy fraction encapsulates the particulate solid material. The method further comprises coking the precipitated heavy fraction and grinding the coked product to an ultrafine size.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: June 7, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Baha E. Abulnaga, Jose Guitian, Sara Ouzts Lindsay
  • Patent number: 7790646
    Abstract: A process for converting fine catalyst slurried in heavy oil into a coke-like material from which catalytic metals can be recovered comprises mixing fine catalyst slurried in heavy oil with solvent, which causes asphaltenes in the heavy oil to precipitate from the heavy oil; separating fine catalyst and precipitated asphaltenes from the heavy oil and solvent; and converting precipitated asphaltenes to a coke-like material by pyrolizing fine catalyst and precipitated asphaltenes separated from the heavy oil.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: September 7, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jose Guitian Lopez, Christopher A. Powers, Donald H. Mohr
  • Patent number: 7737068
    Abstract: A process for recovering catalytic metals from fine catalyst slurried in heavy oil comprises pyrolizing fine catalyst slurried in heavy oil to provide one or more lighter oil products and a coke-like material and recovering catalytic metals from the coke-like material.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 15, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Christopher A. Powers, Donald H. Mohr, Bruce E. Reynolds, Jose Guitian Lopez
  • Publication number: 20100122938
    Abstract: A method for separating and recovering ultrafine particulate solid material from a suspension or slurry of the solid material and a hydrocarbon liquid by precipitation or flocculation of a heavy fraction of the hydrocarbon liquid with an effective amount of a precipitation or flocculation agent such that the precipitated heavy fraction encapsulates the particulate solid material. The method further comprises coking the precipitated heavy fraction and grinding the coked product to an ultrafine size.
    Type: Application
    Filed: January 21, 2010
    Publication date: May 20, 2010
    Inventors: Baha E. Abulnaga, Jose Guitian, Sara Ouzts Lindsay
  • Patent number: 7674369
    Abstract: A method for separating and recovering ultrafine particulate solid material from a suspension or slurry of the solid material and a hydrocarbon liquid by precipitation or flocculation of a heavy fraction of the hydrocarbon liquid with an effective amount of a precipitation or flocculation agent such that the precipitated heavy fraction encapsulates the particulate solid material. The method further comprises coking the precipitated heavy fraction and grinding the coked product to an ultrafine size.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: March 9, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Baha E. Abulnaga, Jose Guitian, Sara Ouzts Lindsay
  • Publication number: 20090163352
    Abstract: A process for recovering catalytic metals from fine catalyst slurried in heavy oil comprises pyrolizing fine catalyst slurried in heavy oil to provide one or more lighter oil products and a coke-like material and recovering catalytic metals from the coke-like material.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventors: Christopher A. Powers, Donald H. Mohr, Bruce E. Reynolds, Jose Guitian Lopez
  • Publication number: 20090159491
    Abstract: A process for converting fine catalyst slurried in heavy oil into a coke-like material from which catalytic metals can be recovered comprises mixing fine catalyst slurried in heavy oil with solvent, which causes asphaltenes in the heavy oil to precipitate from the heavy oil; separating fine catalyst and precipitated asphaltenes from the heavy oil and solvent; and converting precipitated asphaltenes to a coke-like material by pyrolizing fine catalyst and precipitated asphaltenes separated from the heavy oil.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventors: Jose Guitian Lopez, Christopher A. Powers, Donald H. Mohr
  • Publication number: 20080156700
    Abstract: A method for separating and recovering ultrafine particulate solid material from a suspension or slurry of the solid material and a hydrocarbon liquid by precipitation or flocculation of a heavy fraction of the hydrocarbon liquid with an effective amount of a precipitation or flocculation agent such that the precipitated heavy fraction encapsulates the particulate solid material. The method further comprises coking the precipitated heavy fraction and grinding the coked product to an ultrafine size.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Applicant: Chevron U.S.A. INC.
    Inventors: Baha E. Abulnaga, Jose Guitian, Sara Ouzts Lindsay
  • Patent number: 6387840
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: May 14, 2002
    Assignee: Intevep, S.A.
    Inventors: Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio, Pedro Pereira, Jose Guitian, Jose Cordova
  • Patent number: 6344429
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: February 5, 2002
    Assignee: Intevep, S.A.
    Inventors: Pedro Pereira, Jose Guitian, Jose Cordova, Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio
  • Publication number: 20010006156
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Application
    Filed: February 26, 2001
    Publication date: July 5, 2001
    Inventors: Pedro Pereira, Jose Guitian, Jose Cordova, Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio
  • Patent number: 6193875
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: February 27, 2001
    Assignee: Intevep, S.A.
    Inventors: Pedro Pereira, Jose Guitian, Jose Cordova, Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio
  • Patent number: 6169054
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: January 2, 2001
    Assignee: Intevep, S.A.
    Inventors: Pedro Pereira, Jose Guitian, Jose Cordova, Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio
  • Patent number: 6043182
    Abstract: A method for preparing an oil soluble catalytic precursor includes the steps of: providing a mixture of a catalytic metal salt in water, wherein the catalytic metal salt contains a catalytic metal selected from the group consisting of alkali metals, alkaline earth metals, transition metals, and mixtures thereof; providing a heavy hydrocarbon phase; forming a water in oil emulsion of the mixture in the heavy hydrocarbon phase; and heating the emulsion at a temperature sufficient to dehydrate the emulsion so as to provide a hydrocarbon containing an oil soluble compound containing the catalytic metal.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: March 28, 2000
    Assignee: Intevep, S.A.
    Inventors: Jose Cordova, Pedro Pereira, Jose Guitian, Antida Andriollo, Alfredo Cirilo, Francisco Granadillo
  • Patent number: 5922190
    Abstract: A process for suppressing foam formation in a bubble column reactor includes the steps of feeding a liquid and a gas to a reactor at a liquid velocity and a gas velocity respectively; and adding particles of a solid material to the liquid, wherein the particles are wettable by the liquid, and whereby foam formation in the reactor is suppressed
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: July 13, 1999
    Assignee: Intevep, S.A.
    Inventors: Jose Guitian, Daniel D. Joseph, Julio Krasuk
  • Patent number: 5922191
    Abstract: A process for suppressing foam formation in a vessel includes the steps of feeding a liquid and a gas to a vessel at a liquid velocity and a gas velocity respectively; adding particles of a solid material to the liquid, the particles having a particle size and particle density; and selecting at least one of the liquid velocity, particle size and particle density so as to fluidize the particles in the liquid, whereby foam formation in the vessel is suppressed. The particles are preferably liquid phase phobic particles.
    Type: Grant
    Filed: June 25, 1997
    Date of Patent: July 13, 1999
    Assignee: Intevep, S.A.
    Inventors: Clara Mata, Jose Guitian, Daniel D. Joseph, Julio Krasuk
  • Patent number: 5166118
    Abstract: A catalyst for the hydrogenation of a hydrocarbon material which is a member selected from the group consisting of red mud, iron oxides, iron ores, hard coals, lignites impregnated with heavy metal salts, carbon black, soots from gasifiers, and cokes produced by the hydrogenation of virgin residues, the catalyst being comprised of at least two separate particle size fractions such that the combined fractions have a particle size distribution between 0.1 and 2,000 microns with 10-40 wt. % of the particles having a particle size greater than 100 microns, and the mixture of fractions not being represented by a straight line when the accumulative weight of the particles vs. particle size which is plotted on log (minus log) vs. log graph paper has a correlation coefficient R.sup.2 less than 0.96 as determined from the equation: ##EQU1## wherein n is the number of experimental points, y is ln [-ln (n/1000)] and x is ln (dp), wherein dp is the particle size (.mu.m) of the particles.
    Type: Grant
    Filed: April 19, 1989
    Date of Patent: November 24, 1992
    Assignee: Veba Oel Technologie GmbH
    Inventors: Klaus Kretschmar, Ludwig Merz, Klaus Niemann, Jose Guitian, Julio Krasuk, Franzo Marruffo, Klaus Kurzeja
  • Patent number: 4851107
    Abstract: A process for the hydrogenation of heavy oils, residual oils, waste oils, used oils, shell oils, and tar sand oils by hydrogenating a slurry of the oil at a partial hydrogen pressure of 50-300 bar, a temperature of 250.degree.-500.degree. C., a space velocity of 0.1-5 T/m.sup.3 h, and a gas/liquid ratio of 100-10000 Nm.sup.3/ T, wherein the additive comprises two different grain size portions, a fine grain portion having a grain size of 90 microns or less and a coarse grain portion having a grain size of 100-1000 microns.
    Type: Grant
    Filed: October 7, 1987
    Date of Patent: July 25, 1989
    Assignees: Veba OEL Entwicklungs-Gesellschaft mbH, Intevep S. A.
    Inventors: Klaus Kretschmar, Ludwig Merz, Klaus Niemann, Jose Guitian, Julio Krasuk, Franzo Marruffo
  • Patent number: 4752376
    Abstract: A process for treating heavy crude oil feedstocks to reduce the asphaltenes, metals and sulfur content thereof while maintaining a high conversion thereof comprising: subjecting the feedstock to an asphaltene separation stage and thereafter subjecting the deasphaltene crude to a first hydrotreatment stage employing a first macroporous catalyst so as to produce an intermediate partially demetallized and desulfurized product and thereafter treating said intermediate product in a second hydrotreatment stage using a microporous catalyst wherein the microporous catalyst exhibits extended life period.
    Type: Grant
    Filed: July 8, 1986
    Date of Patent: June 21, 1988
    Assignee: Intevep, S.A.
    Inventors: Jacinto Pachano, Jose Guitian, Otto Rodriguez, Julio H. Krasuk
  • Patent number: 4732664
    Abstract: A process for separating finely divided solid particles from a hydroprocessing liquid product which comprises treating a heavy hydrocarbon feed having an asphaltene content of at least 1 wt. % so as to obtain an unstable product characterized by heavy molecular weight molecules which promote the agglomeration of said finely divided solid particles and thereafter feeding said unstable product to a precipitating zone provided with a centrifugal decanter for precipitating the agglomerated solid particles and said heavy molecular weight molecules in said precipitating zone wherein at least 80 wt. % of the finely divided solid particles is recovered.
    Type: Grant
    Filed: November 26, 1984
    Date of Patent: March 22, 1988
    Assignee: INTEVEP, S.A.
    Inventors: Rodolfo B. Solari Martini, Roger Marzin, Jose Guitian Lopez, Jose V. Rodriguez Golding, Julio H. Krasuk