Patents by Inventor Josef Heinisch

Josef Heinisch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085271
    Abstract: A measuring apparatus for measuring a modulation transfer function (MTF) of an afocal optical system has a receiving device, a light-providing device, a camera, at least one further light-providing device, at least one further camera, and a transmission interface. In an operational state, the light-providing device, the afocal optical system, and the camera are arranged coaxially on or with measurement axes parallel to a measuring axis oriented perpendicularly to the receiving plane. The further light-providing device, the afocal optical system, and the further camera are arranged coaxially on or with measurement axes parallel to an oblique measuring axis oriented obliquely to the measuring axis. An evaluation unit is configured to identify, using at least one camera image, the modulation transfer function of the afocal optical system.
    Type: Application
    Filed: February 1, 2022
    Publication date: March 14, 2024
    Applicant: TRIOPTICS GmbH
    Inventors: Josef HEINISCH, Sven SASSNING, Aiko RUPRECHT, Gabriel LISKE
  • Patent number: 10386267
    Abstract: A device for measuring the MTF or another imaging property of an optical system has a light pattern generating unit that generates a light pattern in a focal plane of the optical system. A reference axis of the device is oriented along an optical axis of the optical system. The device further comprises an arrangement of N, N=2, 3, 4, . . . , cameras that are separated from one another. Each camera has an objective and a light sensor that is arranged in a focal plane of the objective. The cameras are arranged on a side opposite the light pattern generating unit such that the light sensor of each camera detects an image of exactly one section of the light pattern. At least one beam deflecting element is arranged between the optical system and at least one of the cameras such that it deflects light away from the reference axis before the light impinges on the at least one camera.
    Type: Grant
    Filed: May 7, 2016
    Date of Patent: August 20, 2019
    Assignee: TRIOPTICS GMBH
    Inventors: Josef Heinisch, Ralf Poikat
  • Publication number: 20180136079
    Abstract: A device for measuring the MTF or another imaging property of an optical system has a light pattern generating unit that generates a light pattern in a focal plane of the optical system. A reference axis of the device is oriented along an optical axis of the optical system. The device further comprises an arrangement of N, N=2, 3, 4, . . . , cameras that are separated from one another. Each camera has an objective and a light sensor that is arranged in a focal plane of the objective. The cameras are arranged on a side opposite the light pattern generating unit such that the light sensor of each camera detects an image of exactly one section of the light pattern. At least one beam deflecting element is arranged between the optical system and at least one of the cameras such that it deflects light away from the reference axis before the light impinges on the at least one camera.
    Type: Application
    Filed: May 7, 2016
    Publication date: May 17, 2018
    Inventors: Josef Heinisch, Ralf Poikat
  • Patent number: 8913234
    Abstract: A method measures the positions of centers of curvature of optical surfaces of a multi-lens optical system. The spacings between the surfaces are measured along a reference axis using an interferometer. Subsequently the centers of curvature of the surfaces are measured using an optical angle-measuring device. In the course of the measurement of the position of the center of curvature of a surface situated within the optical system, the measured positions of the centers of curvature of the surfaces situated between this surface and the angle-measuring device and the previously measured spacings between the surfaces are taken into consideration computationally. In this way, a particularly high accuracy of measurement is achieved, because desired spacings do not have to be fallen back upon.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: December 16, 2014
    Assignee: Trioptics GmbH
    Inventors: Josef Heinisch, Stefan Krey, Eugen Dumitrescu, Aiko Ruprecht, Patrik Langehanenberg
  • Patent number: 8760666
    Abstract: A method for measuring spacings between optical surfaces of a multi-lens optical system includes detecting the centring state of the optical system by taking into consideration all optical surfaces of the optical system. Then the optical system is adjusted in such a way, taking the centring state into consideration, that the optical axis of the optical system is aligned as far as possible with a reference axis. In a next step the spacings between the optical surfaces are determined with the aid of a short-coherence interferometer. The measuring-light ray directed onto the optical system for this purpose runs likewise along the reference axis.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: June 24, 2014
    Assignee: Trioptics GmbH
    Inventors: Josef Heinisch, Stefan Krey, Eugen Dumitrescu, Aiko Ruprecht, Patrik Langehanenberg
  • Publication number: 20120133924
    Abstract: A method measures the positions of centres of curvature of optical surfaces of a multi-lens optical system. The spacings between the surfaces are measured along a reference axis using an interferometer. Subsequently the centres of curvature of the surfaces are measured using an optical angle-measuring device. In the course of the measurement of the position of the centre of curvature of a surface situated within the optical system, the measured positions of the centres of curvature of the surfaces situated between this surface and the angle-measuring device and the previously measured spacings between the surfaces are taken into consideration computationally. In this way, a particularly high accuracy of measurement is achieved, because desired spacings do not have to be fallen back upon.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 31, 2012
    Applicant: Trioptics GmbH
    Inventors: Josef Heinisch, Stefan Krey, Eugen Dumitrescu, Aiko Ruprecht, Patrik Langehanenberg
  • Publication number: 20120133951
    Abstract: A method for measuring spacings between optical surfaces of a multi-lens optical system includes detecting the centring state of the optical system by taking into consideration all optical surfaces of the optical system. Then the optical system is adjusted in such a way, taking the centring state into consideration, that the optical axis of the optical system is aligned as far as possible with a reference axis. In a next step the spacings between the optical surfaces are determined with the aid of a short-coherence interferometer. The measuring-light ray directed onto the optical system for this purpose runs likewise along the reference axis.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 31, 2012
    Applicant: Trioptics GmnH
    Inventors: Josef Heinisch, Stefan Krey, Eugen Dumitrescu, Aiko Ruprecht, Patrik Langehanenberg