Patents by Inventor Josef K. Winkler

Josef K. Winkler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240215980
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Application
    Filed: January 5, 2024
    Publication date: July 4, 2024
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher C. Thompson, Josef K. Winkler
  • Patent number: 11864767
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: January 9, 2024
    Assignee: G.I. Windows, Inc.
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher C. Thompson, Josef K. Winkler
  • Publication number: 20210169485
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Application
    Filed: September 25, 2020
    Publication date: June 10, 2021
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher C. Thompson, Josef K. Winkler
  • Patent number: 10813642
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: October 27, 2020
    Assignee: G.I. Windows, Inc.
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher Thompson, Josef K. Winkler
  • Patent number: 10595869
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: March 24, 2020
    Assignee: G.I. Windows, Inc.
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher Thompson, Josef K. Winkler
  • Publication number: 20180263627
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 20, 2018
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher Thompson, Josef K. Winkler
  • Patent number: 9993351
    Abstract: The present invention features new methods, apparatuses and devices for fixing adjacent bone segments, segments of a bony structure and adjacent vertebrate of a spine. The methods, apparatuses and devices utilize a new apparatus for forming a channel in a surface of the bone or bony structure segments or adjacent vertebra or a channel submerged within the bone or bony structure segments or adjacent vertebra. In more particular embodiments such apparatuses and methods including forming an arcuate channel and which channel can receive therein a curved rod or implant member, which also preferably is arcuate, and avoids the associated problems with prior cage or straight rod and screw systems. Also featured are systems, apparatuses and methods for repairing, replacing or augmenting the nucleus and/or annulus of a disc.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: June 12, 2018
    Assignee: Silicon Valley Bank
    Inventors: Allen Carl, Josef K. Winkler, Robert F. Beisel, Spanky A. Raymond, Daniel S. Savage, Jason J. Gromek, Carl M. Nilsson
  • Publication number: 20180064444
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 8, 2018
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher Thompson, Josef K. Winkler
  • Patent number: 9763664
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: September 19, 2017
    Assignee: GI Windows, Inc.
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher Thompson, Josef K. Winkler
  • Patent number: 9393127
    Abstract: The present invention features new methods, apparatuses and devices for fixing adjacent bone segments, segments of a bony structure and adjacent vertebrate of a spine. The methods, apparatuses and devices utilize an apparatus for forming a channel in a surface of the bone or bony structure segments or adjacent vertebra or a channel submerged within the bone or bony structure segments or adjacent vertebra. In more particular embodiments such apparatuses and methods including forming an arcuate channel and which channel can receive therein a curved rod or implant member. Also featured are systems, apparatuses and methods for removably suspending a spacer in the intervertebral space while forming such a channel as well as systems, apparatuses and methods for use of dynamized implant members.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: July 19, 2016
    Assignee: K2M, Inc.
    Inventors: Allen Carl, Josef K. Winkler, Robert Floyd Beisel, Spanky Allen Raymond, Daniel Stephen Savage, Jason John Gromek, Carl Michael Nilsson, Nathan Jeffrey Pierce
  • Patent number: 9277929
    Abstract: Disclosed is an apparatus for forming an arcuate channel in one or more segments of a bone, bony structure or adjacent vertebrae of a spine. The apparatus includes, inter alia, a base member which is positioned proximate to the surgical site, a support arm extending proximally from the base member, an arcuate guide member and a drill assembly. The arcuate guide member is slidably mounted to the support arm. The drill assembly is operatively coupled to the support arm and includes a drill bit attached to the distal end of a flexible drive cable. The flexible drive cable extends axially along the support arm and is axially and rotationally movable with respect thereto. The drill bit is operatively coupled to an end of the arcuate guide member such that when the drill assembly is moved distally, the arcuate guide member slides with respect to the support arm and forces the drill bit to traverse an arcuate path.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: March 8, 2016
    Assignee: K2M, Inc.
    Inventors: Allen Carl, Josef K. Winkler, Robert Floyd Beisel, Spanky Allen Raymond, Daniel Stephen Savage, Jason John Gromek, Carl Michael Nilsson
  • Publication number: 20150057688
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 26, 2015
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher Thompson, Josef K. Winkler
  • Publication number: 20140358236
    Abstract: The present invention features new methods, apparatuses and devices for fixing adjacent bone segments, segments of a bony structure and adjacent vertebrate of a spine. The methods, apparatuses and devices utilize an apparatus for forming a channel in a surface of the bone or bony structure segments or adjacent vertebra or a channel submerged within the bone or bony structure segments or adjacent vertebra. In more particular embodiments such apparatuses and methods including forming an arcuate channel and which channel can receive therein a curved rod or implant member. Also featured are systems, apparatuses and methods for removably suspending a spacer in the intervertebral space while forming such a channel as well as systems, apparatuses and methods for use of dynamized implant members.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Allen Carl, Josef K. Winkler, Robert Floyd Beisel, Spanky Allen Raymond, Daniel Stephen Savage, Jason John Gromek, Carl Michael Nilsson, Nathan Jeffrey Pierce
  • Patent number: 8870899
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: October 28, 2014
    Assignee: GI Windows, Inc.
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher Thompson, Josef K. Winkler
  • Patent number: 8870898
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: October 28, 2014
    Assignee: GI Windows, Inc.
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher Thompson, Josef K. Winkler
  • Patent number: 8845642
    Abstract: The present invention features new methods, apparatuses and devices for fixing adjacent bone segments, segments of a bony structure and adjacent vertebrate of a spine. The methods, apparatuses and devices utilize an apparatus for forming a channel in a surface of the bone or bony structure segments or adjacent vertebra or a channel submerged within the bone or bony structure segments or adjacent vertebra. In more particular embodiments such apparatuses and methods including forming an arcuate channel and which channel can receive therein a curved rod or implant member. Also featured are systems, apparatuses and methods for removably suspending a spacer in the intervertebral space while forming such a channel as well as systems, apparatuses and methods for use of dynamized implant members.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: September 30, 2014
    Assignee: K2M, Inc.
    Inventors: Allen Carl, Josef K. Winkler, Robert Floyd Beisel, Spanky Allen Raymond, Daniel Stephen Savage, Jason John Gromek, Carl Michael Nilsson, Nathan Jeffrey Pierce
  • Publication number: 20140236200
    Abstract: The invention is an implantable magnetic anastomosis device having an exoskeleton that directs self-assembly. The design allows the device to be delivered in a linear configuration using a minimally-invasive technique, such as endoscopy or laparoscopy, whereupon the device self-assembles into, e.g., a polygon. A coupled set of polygons define a circumscribed tissue that can be perforated, or the tissue can be allowed to naturally necrose and perforate. The device can be used to create anastomoses in a variety of tissues, such as tissues found in the gastrointestinal, renal/urinary, and reproductive tracts. New procedures for using anastomoses, e.g., surgical bypass are also disclosed.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicant: G. I. Windows, Inc.
    Inventors: Robert F. Beisel, Peter Lukin, John McWeeney, Marvin Ryou, Christopher Thompson, Josef K. Winkler
  • Publication number: 20140214040
    Abstract: The present invention features new methods, apparatuses and devices for fixing adjacent bone segments, segments of a bony structure and adjacent vertebrate of a spine. The methods, apparatuses and devices utilize a new apparatus for forming a channel in a surface of the bone or bony structure segments or adjacent vertebra or a channel submerged within the bone or bony structure segments or adjacent vertebra. In more particular embodiments such apparatuses and methods including forming an arcuate channel and which channel can receive therein a curved rod or implant member, which also preferably is arcuate, and avoids the associated problems with prior cage or straight rod and screw systems. Also featured are systems, apparatuses and methods for repairing, replacing or augmenting the nucleus and/or annulus of a disc.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Applicant: K2M, INC.
    Inventors: Allen Carl, Josef K. Winkler, Robert F. Beisel, Spanky A. Raymond, Daniel S. Savage, Jason J. Gromek, Carl M. Nilsson
  • Patent number: 8721647
    Abstract: The present invention features new methods, apparatuses and devices for fixing adjacent bone segments, segments of a bony structure and adjacent vertebrate of a spine. The methods, apparatuses and devices utilize a new apparatus for forming a channel in a surface of the bone or bony structure segments or adjacent vertebra or a channel submerged within the bone or bony structure segments or adjacent vertebra. In more particular embodiments such apparatuses and methods including forming an arcuate channel and which channel can receive therein a curved rod or implant member, which also preferably is arcuate, and avoids the associated problems with prior cage or straight rod and screw systems. Also featured are systems, apparatuses and methods for repairing, replacing or augmenting the nucleus and/or annulus of a disc.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: May 13, 2014
    Assignee: K2M, Inc.
    Inventors: Allen Carl, Josef K. Winkler, Robert Floyd Beisel, Spanky Allen Raymond, Daniel Stephen Savage, Jason John Gromek, Carl Michael Nilsson
  • Publication number: 20140039504
    Abstract: Disclosed is an apparatus for forming an arcuate channel in one or more segments of a bone, bony structure or adjacent vertebrae of a spine. The apparatus includes, inter alia, a base member which is positioned proximate to the surgical site, a support arm extending proximally from the base member, an arcuate guide member and a drill assembly. The arcuate guide member is slidably mounted to the support arm. The drill assembly is operatively coupled to the support arm and includes a drill bit attached to the distal end of a flexible drive cable. The flexible drive cable extends axially along the support arm and is axially and rotationally movable with respect thereto. The drill bit is operatively coupled to an end of the arcuate guide member such that when the drill assembly is moved distally, the arcuate guide member slides with respect to the support arm and forces the drill bit to traverse an arcuate path.
    Type: Application
    Filed: June 27, 2013
    Publication date: February 6, 2014
    Inventors: Allen Carl, Josef K. Winkler, Robert Floyd Beisel, Spanky Allen Raymond, Daniel Stephen Savage, Jason John Gromek, Carl Michael Nilsson