Patents by Inventor Joseph A. Cowfer

Joseph A. Cowfer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180185833
    Abstract: A process comprising (i) providing a spent catalytic material; (ii) water washing the spent catalytic material to provide a regenerated catalytic material; and (iii) employing the regenerated catalytic material within a catalytic oxidation process.
    Type: Application
    Filed: February 8, 2017
    Publication date: July 5, 2018
    Applicant: Oxy Vinyls, LP
    Inventors: Keith KRAMER, Joseph A. COWFER
  • Patent number: 8956993
    Abstract: Oxychlorination catalyst compositions which include a catalytically effective amount of an oxychlorination catalyst and a diluent having certain chemical composition and/or physical properties are disclosed. Processes using such oxychlorination catalyst compositions are also described. Some oxychlorination catalyst compositions and processes disclosed herein can increase the optimal operating temperature, and thereby increase the production capacity of an existing reactor, such as a fluid-bed reactor, compared to other oxychlorination catalyst compositions.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 17, 2015
    Assignee: Oxy Vinyls LP
    Inventors: Keith S. Kramer, Joseph A. Cowfer
  • Publication number: 20090298682
    Abstract: Oxychlorination catalyst compositions which include a catalytically effective amount of an oxychlorination catalyst and a diluent having certain chemical composition and/or physical properties are disclosed. Processes using such oxychlorination catalyst compositions are also described. Some oxychlorination catalyst compositions and processes disclosed herein can increase the optimal operating temperature, and thereby increase the production capacity of an existing reactor, such as a fluid-bed reactor, compared to other oxychlorination catalyst compositions.
    Type: Application
    Filed: August 10, 2009
    Publication date: December 3, 2009
    Applicant: Oxy Vinyls, LP
    Inventors: Keith S. Kramer, Joseph A. Cowfer
  • Patent number: 7585806
    Abstract: Oxychlorination catalyst compositions which include a catalytically effective amount of an oxychlorination catalyst and a diluent having certain chemical composition and/or physical properties are disclosed. Processes using such oxychlorination catalyst compositions are also described. Some oxychlorination catalyst compositions and processes disclosed herein can increase the optimal operating temperature, and thereby increase the production capacity of an existing reactor, such as a fluid-bed reactor, compared to other oxychlorination catalyst compositions.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: September 8, 2009
    Assignee: Oxy Vinyls, LP
    Inventors: Keith S. Kramer, Joseph A. Cowfer
  • Publication number: 20070112235
    Abstract: Oxychlorination catalyst compositions which include a catalytically effective amount of an oxychlorination catalyst and a diluent having certain chemical composition and/or physical properties are disclosed. Processes using such oxychlorination catalyst compositions are also described. Some oxychlorination catalyst compositions and processes disclosed herein can increase the optimal operating temperature, and thereby increase the production capacity of an existing reactor, such as a fluid-bed reactor, compared to other oxychlorination catalyst compositions.
    Type: Application
    Filed: November 10, 2006
    Publication date: May 17, 2007
    Applicant: INDSPEC Chemical Corporation
    Inventors: Keith Kramer, Joseph Cowfer
  • Patent number: 5635438
    Abstract: In accordance with the present invention there is provided a method for making and using an improved chromium catalyst which is useful in oxidation of combustible materials such as hydrocarbons, chloro-carbons, chlorohydrocarbons, polymers and other combustible materials. The process for the catalytic oxidation of combustible material, comprises: contacting a combustible material in a heated reaction zone in the presence of oxygen and a chromium impregnated catalyst prepared by impregnating a supporting material with a chromium compound and calcining the solid material at a temperature and for a time at least sufficient for the supporting material to reach a temperature of at least 725.degree. C. By the method the catalyst exhibits reduced loss of chromium to the environment.
    Type: Grant
    Filed: June 10, 1994
    Date of Patent: June 3, 1997
    Assignee: The Geon Company
    Inventors: Joseph A. Cowfer, George H. Young
  • Patent number: 5600043
    Abstract: The subject invention relates to a process for oxychlorination of ethylene to produce 1,2-dichloroethane. The process comprises contacting a mixture of ethylene, oxygen or oxygen containing gas and hydrogen chloride with a fixed or fluidized catalyst composition in a reaction zone and recovering 1,2-dichloroethane from the effluents of the reaction zone.The invention is embodied in a process for the oxychlorination of ethylene to produce 1,2-dichloroethane by contacting a mixture of ethylene, oxygen containing gas and hydrogen chloride with a catalyst composition in a reaction zone and recovering 1,2-dichloroethane from the effluents of the reaction zone the process comprising introducing ethylene, HCl and oxygen containing gas into said reaction zone in a ratio of 1.8 and 2.2 moles of HCl per mole of ethylene and from 0.5 to 1 mole of oxygen per mole of ethylene, the oxychlorination process taking place at a temperature of from 215.degree. C. to 230.degree. C.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: February 4, 1997
    Assignee: The Geon Company
    Inventors: Victor J. Johnston, Joseph A. Cowfer
  • Patent number: 5382726
    Abstract: The subject invention relates to catalyst compositions for oxychlorination of ethylene to produce 1,2-dichloroethane. The catalysts comprise copper chloride, at least one alkali metal, at least one rare earth metal, and at least one Group IIA metal on a high surface area support for fluid bed applications or on a high or low surface area support for fixed bed applications. The catalyst compositions are prepared by depositing the metals on a support. The use of the catalyst compositions of the invention in the oxychlorination of ethylene to EDC results in high percent ethylene efficiency, high EDC product purity and high percent HCl conversion without exhibiting catalyst stickiness. A process for oxychlorination of ethylene to produce 1,2-dichloroethane is also disclosed.
    Type: Grant
    Filed: November 22, 1993
    Date of Patent: January 17, 1995
    Assignee: The Geon Company
    Inventors: George H. Young, Joseph A. Cowfer, Victor J. Johnston
  • Patent number: 5292703
    Abstract: The subject invention relates to catalyst compositions for oxychlorination of ethylene to produce 1,2-dichloroethane. The catalysts comprise copper chloride, at least one alkali metal, at least one rare earth metal, and at least one Group IIA metal on a high surface area support for fluid bed applications or on a high or low surface area support for fixed bed applications. The catalyst compositions are prepared by depositing the metals on a support. The use of the catalyst compositions of the invention in the oxychlorination of ethylene to EDC results in high percent ethylene efficiency, high EDC product purity and high percent HCl conversion without exhibiting catalyst stickiness. A process for oxychlorination of ethylene to produce 1,2-dichloroethane is also disclosed.
    Type: Grant
    Filed: July 28, 1992
    Date of Patent: March 8, 1994
    Assignee: The Geon Company
    Inventors: George H. Young, Joseph A. Cowfer, Victor J. Johnston
  • Patent number: 4849393
    Abstract: A fluidizable catalyst composition is provided containing about 2% to about 8% by weight of copper (about 4% to about 17% by weight of copper salt), from about 1.0% to about 10% by weight of a rare earth metal salt(s), preferably the chloride salt(s), and from about 0.25% to about 2.3% by weight of an alkali metal salt(s), preferably the chloride salt(s), all weight percents based upon the total weight of the catalyst composition. The metals are codeposited on a fluidizable, high surface area alumina support. The weight of the alkali metal employed is not over 2.5% by weight (as the chloride) and the weight ratio of the rare earth metal salt(s) to the alkali metal salt(s) must be at least 1:1. Such catalyst compositions are extremely useful as fluid bed catalysts in the vapor phase oxychlorination reaction of ethylene, oxygen and hydrogen chloride to produce 1,2-dichloroethane (EDC).
    Type: Grant
    Filed: December 31, 1987
    Date of Patent: July 18, 1989
    Assignee: The B.F. Goodrich Company
    Inventors: Jamal S. Eden, Joseph A. Cowfer
  • Patent number: 4760207
    Abstract: In a process for producing 1,2-dichloroethane or ethylene dichloride ("EDC") in a high temperature direct chlorination ("HTDC") reactor in which ethylene is reacted with wet chlorine having a water content more than 100 ppm but no more than 1% by wt of the chlorine, the water leaves the reactor with the EDC product draw-off, either in the vapor overhead (if the HTDC is a boiling reactor), or, as a liquid sidestream (if the HTDC is a non-boiling reactor). In a subsequent step, the EDC draw-off is distilled in a product distillation column in which the water leaves in the overhead which is condensed to remove condensables in a first stage, and vent a non-condensable vent streams. The vent stream is corrosive due to the presence of minor amounts of chlorine, HCl and water, along with oxygen which is injected into the HTDC to improve selectivity of the reaction. The vent gases from the first stage are further cooled to a temperature in the range from about -30.degree. C. to about 0.degree. C.
    Type: Grant
    Filed: September 18, 1986
    Date of Patent: July 26, 1988
    Assignee: B.F. Goodrich Company
    Inventor: Joseph A. Cowfer
  • Patent number: 4740642
    Abstract: A fluidizable catalyst composition is provided containing about 2% to about 8% by weight of copper (about 4% to about 17% by weight of copper salt), from about 0.2% to about 10% by weight of a rare earth metal salt(s), preferably the chloride salt(s), and from about 0.25% to about 2.3% by weight of an alkali metal salt(s), preferably the chloride salt(s), all weight percents based upon the total weight of the catalyst composition. The metals are codeposited on a fluidizable, high surface area alumina support. The weight of the alkali metal employed is not over 2.5% by weight (as the chloride) and the weight ratio of the rare earth metal salt(s) to the alkali metal salt(s) must be at least 0.8:1. Such catalyst compositions are extremely useful as fluid bed catalysts in the vapor phase oxychlorination reaction of ethylene, oxygen and hydrogen chloride to produce 1,2-dichloroethane (EDC).
    Type: Grant
    Filed: August 21, 1986
    Date of Patent: April 26, 1988
    Assignee: The BF Goodrich Company
    Inventors: Jamal S. Eden, Joseph A. Cowfer
  • Patent number: 4642400
    Abstract: This process stems from the discovery that the solubility of water in vinyl chloride monomer ("VCM") is so low in a cold aqueous caustic solution at a temperature below 0.degree. C., that the aqueous solution will remove water dissolved in the monomer, and at the same time, will neutralize the HCl associated with the monomer and prevent the formation of acetylene. This discovery makes it possible to dry and neutralize a HCl and water-containing vinyl chloride ("VCl") stream, by intimately contacting the stream with a cold aqueous 2 to 30 wt % caustic soda solution at a temperature below 25.degree. F. and above the freezing point of the caustic solution. In a commercial VCM producing facility, VCl can be "finished" in a "stand-alone" processing facility with greater economy than in a conventional VCM plant, yet avoid the hazards of operating a conventional VCl stripping column and scrubbers packed with solid caustic pellets.
    Type: Grant
    Filed: September 23, 1985
    Date of Patent: February 10, 1987
    Assignee: The B. F. Goodrich Company
    Inventors: Joseph A. Cowfer, James E. Best
  • Patent number: 4339620
    Abstract: There is disclosed a method and composition for improving the fluidization characteristics and alleviating or inhibiting stickiness in a supported cupric chloride catalyst used as fluid bed catalyst in oxyhydrochlorinations reactions. The method involves the in situ preparation of the supported cupric chloride catalyst by addition of bare support on which no cupric chloride is deposited to the supported cupric chloride catalyst in the fluidized bed, or the use in the bed as the initial charge or as addition to the bed as makeup, of a composition which is a mixture of supported cupric chloride catalyst and bare support. In either event, as the oxyhydrochlorination proceeds, a portion of the cupric chloride on the supported catalyst becomes released therefrom and deposited in situ on the bare support, and stickiness of the cupric chloride containing catalyst particles to one another in the fluid bed is alleviated or inhibited.
    Type: Grant
    Filed: March 2, 1981
    Date of Patent: July 13, 1982
    Assignee: The B. F. Goodrich Company
    Inventors: Joseph A. Cowfer, Jamal S. Eden, Angelo J. Magistro
  • Patent number: 4226798
    Abstract: A method is disclosed for using a pendulum viscometer having damped torsional oscillations, in a laboratory catalytic fluid-bed reactor, to monitor a propensity to stick which is exhibited by certain supported catalysts. A fluid-bed of such catalysts has been found to become suddenly more sticky just before a point at which a change in pressure drop across the fluid-bed can be measured due to a process "upset". At this point ("the inversion point"), the upset is usually irremediable. The method includes correlating data on catalyst stickiness from a laboratory reactor operating at atmospheric pressure, with an expected level of catalyst stickiness in a commercial reactor operating at elevated pressure.A pendulum viscometer and related auxiliary apparatus is disclosed for magnetically and electrically measuring and recording the rate at which the pendulum's torsional oscillations are damped.
    Type: Grant
    Filed: October 6, 1978
    Date of Patent: October 7, 1980
    Assignee: The B. F. Goodrich Company
    Inventors: Joseph A. Cowfer, Dane E. Jablonski, Ronald M. Kovach, Angelo J. Magistro