Patents by Inventor Joseph A. Scherer

Joseph A. Scherer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11781229
    Abstract: Described are methods and systems for producing hydrogen using closed-loop geothermal technology from geothermal, oil and gas or other resources. Various configurations and types of closed-loop systems are described which enable the capture, transfer and use of heat from the resource and from chemical reactions from the processes and methods employed and to also create high down bore pressure, in each case to enhance the technical and commercial efficiency of various hydrogen production methods. As hydrogen is created at high pressures and purities which are necessary for delivery and commercial use of hydrogen, the need for additional compression and purification activities is minimized. Various of the methods and systems described can make hydrogen produced from fossil fuel inputs less carbon intensive and make renewable fuel inputs produce hydrogen entirely without carbon outputs, thereby contributing substantially to the reduction of greenhouse gasses.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: October 10, 2023
    Assignee: GreenFire Energy Inc.
    Inventors: Alvaro J. Amaya, Joseph A. Scherer
  • Patent number: 11597960
    Abstract: The present disclosure relates to approaches for assessing a sample or the presence of microorganisms. The sample, in certain implementations may be assessed for one or both of absence of microorganisms (sterility) and/or for concentration of said organisms (bio-burden). sample partition device may be employed that partitions the sample input volume into multiple discrete measurement zones with little or no loss of sample (e.g., zero-loss) and with little operator involvement, thereby reducing operator- and environment-based false positives.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: March 7, 2023
    Assignee: General Electric Company
    Inventors: Alex David Corwin, Erik Leeming Kvam, Christine Lynne Surrette, Brian Joseph Scherer, Pei-Hsin Kuo, Ralf Lenigk
  • Patent number: 11590502
    Abstract: The present disclosure relates to a consumable sample partition device and it assembly and use. The sample partition device can be used to test a sample for absence of microorganisms (sterility) and/or for concentration of said organisms (bio-burden). The sample partition device partitions the sample input volume into multiple discrete measurement zones with little or no loss of sample (e.g., zero-loss) and with little operator involvement, thereby reducing operator- and environment-based false positives.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: February 28, 2023
    Assignee: General Electric Company
    Inventors: Alex David Corwin, Erik Leeming Kvam, Christine Lynne Surrette, Brian Joseph Scherer, Pei-Hsin Kuo, Ralf Lenigk, Tyler John Hammond
  • Patent number: 11255576
    Abstract: Methods and systems for producing thermal or electrical power from geothermal wells. Power is produced from a working fluid circulating in a closed loop within a geothermal well. Geothermal steam or brine at depth transfers heat at higher temperature than at the surface to the working fluid. The working fluid is then used to produce power directly or indirectly. The geothermal production fluid may be stimulated through use of gas lifting or submersible pumps to assist in bringing such fluids to the surface or through the use blockers to encourage the downhole steam advection and brine recirculation through the resource in a connective loop. The working fluid may be compatible with existing direct heat or power generation equipment; i.e., water for flash plants or hydrocarbons/refrigerants for binary plants.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: February 22, 2022
    Assignee: GreenFire Energy Inc.
    Inventors: Brian S. Higgins, Joseph A. Scherer, Dan Hoyer
  • Publication number: 20210371990
    Abstract: Described are methods and systems for producing hydrogen using closed-loop geothermal technology from geothermal, oil and gas or other resources. Various configurations and types of closed-loop systems are described which enable the capture, transfer and use of heat from the resource and from chemical reactions from the processes and methods employed and to also create high down bore pressure, in each case to enhance the technical and commercial efficiency of various hydrogen production methods. As hydrogen is created at high pressures and purities which are necessary for delivery and commercial use of hydrogen, the need for additional compression and purification activities is minimized. Various of the methods and systems described can make hydrogen produced from fossil fuel inputs less carbon intensive and make renewable fuel inputs produce hydrogen entirely without carbon outputs, thereby contributing substantially to the reduction of greenhouse gasses.
    Type: Application
    Filed: May 13, 2021
    Publication date: December 2, 2021
    Applicant: GreenFire Energy Inc.
    Inventors: Alvaro J. Amaya, Joseph A. Scherer
  • Publication number: 20210062682
    Abstract: Methods and systems for producing thermal or electrical power from geothermal wells. Power is produced from a working fluid circulating in a closed loop within a geothermal well. Geothermal steam or brine at depth transfers heat at higher temperature than at the surface to the working fluid. The working fluid is then used to produce power directly or indirectly. The geothermal production fluid may be stimulated through use of gas lifting or submersible pumps to assist in bringing such fluids to the surface or through the use blockers to encourage the downhole steam advection and brine recirculation through the resource in a connective loop. The working fluid may be compatible with existing direct heat or power generation equipment; i.e., water for flash plants or hydrocarbons/refrigerants for binary plants.
    Type: Application
    Filed: February 8, 2019
    Publication date: March 4, 2021
    Applicant: GreenFire Energy Inc.
    Inventors: Brian S. Higgins, Joseph A. Scherer, Dan Hoyer
  • Publication number: 20210002688
    Abstract: The present disclosure relates to approaches for assessing a sample or the presence of microorganisms. The sample, in certain implementations may be assessed for one or both of absence of microorganisms (sterility) and/or for concentration of said organisms (bio-burden). sample partition device may be employed that partitions the sample input volume into multiple discrete measurement zones with little or no loss of sample (e.g., zero-loss) and with little operator involvement, thereby reducing operator- and environment-based false positives.
    Type: Application
    Filed: July 1, 2019
    Publication date: January 7, 2021
    Inventors: Alex David Corwin, Erik Leeming Kvam, Christine Lynne Surrette, Brian Joseph Scherer, Pei-Hsin Kuo, Ralf Lenigk
  • Publication number: 20210001336
    Abstract: The present disclosure relates to a consumable sample partition device and it assembly and use. The sample partition device can be used to test a sample for absence of microorganisms (sterility) and/or for concentration of said organisms (bio-burden). The sample partition device partitions the sample input volume into multiple discrete measurement zones with little or no loss of sample (e.g., zero-loss) and with little operator involvement, thereby reducing operator- and environment-based false positives.
    Type: Application
    Filed: July 1, 2019
    Publication date: January 7, 2021
    Inventors: Alex David Corwin, Erik Leeming Kvam, Christine Lynne Surrette, Brian Joseph Scherer, Pei-Hsin Kuo, Ralf Lenigk, Tyler John Hammond
  • Patent number: 10527026
    Abstract: A method or apparatus that uses a fluid in a closed loop well system to extract heat from geothermal resources that are located in or near high-temperature, low-permeable geologic formations to produce power. In some embodiments, the closed loop system may include one or more heat exchange zones, where at least a portion of the one or more heat exchange zones may be disposed within a subterranean region having a temperature of at least 350° C. The subterranean region may be within a plastic zone or within 1000 meters of the plastic zone, the plastic zone having a temperature gradient of at least 80° C. per kilometer depth.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: January 7, 2020
    Assignee: GreenFire Energy Inc.
    Inventors: Mark P. Muir, Brian S. Higgins, Joseph A. Scherer, Alan D. Eastman
  • Publication number: 20190055930
    Abstract: A method or apparatus that uses a fluid in a closed loop well system to extract heat from geothermal resources that are located in or near high-temperature, low-permeable geologic formations to produce power. In some embodiments, the closed loop system may include one or more heat exchange zones, where at least a portion of the one or more heat exchange zones may be disposed within a subterranean region having a temperature of at least 350° C. The subterranean region may be within a plastic zone or within 1000 meters of the plastic zone, the plastic zone having a temperature gradient of at least 80° C. per kilometer depth.
    Type: Application
    Filed: February 25, 2016
    Publication date: February 21, 2019
    Applicant: GreenFire Energy Inc
    Inventors: Mark P. Muir, Brian S. Higgins, Joseph A. Scherer, Alan D. Eastman
  • Publication number: 20170217504
    Abstract: This invention relates to a vehicle sawhorse adjustable assembly that comprising of an adjustable wing structure operably adapted to provide a support to a plurality of logs in a longitudinally extended direction on a rear end of a cargo bed extension of a vehicle, a plurality of legs to provide an adjustable height using a plurality of holes in a vertically upward direction to the adjustable wing structure, a removable hitching unit to provide a base support to the adjustable wing structure in an adjustable horizontal direction and a hinge mechanism to connect the hitching unit with the plurality of legs and the adjustable wing structure. Further, the user can mount the assembly as an extension of a cargo-bed of a vehicle and insert structural material into the receptacles of the assembly.
    Type: Application
    Filed: January 28, 2016
    Publication date: August 3, 2017
    Inventors: Joseph Scherer, Cindy L. Scherer
  • Patent number: 9472783
    Abstract: The present techniques provide systems and methods for protecting electronic devices such as organic light emitting devices (OLEDs) from adverse environmental effects using a thin film encapsulation with reduced process time. In some embodiments, the process time of forming a graded barrier over the OLED structure may take less than 5 minutes, and may result in substantially similar barrier properties as those of metal and epoxy sealants and/or typical thin film encapsulations. The process time of forming the barrier may be reduced by increasing deposition rates for organic and/or inorganic materials, reducing the thicknesses of organic and/or inorganic layers, and/or varying the number of zones in the barrier.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: October 18, 2016
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, George Theodore Dalakos, Brian Joseph Scherer
  • Patent number: 8753711
    Abstract: The present techniques provide systems and methods for protecting electronic devices, such as organic light emitting devices (OLEDs) from adverse environmental effects. The edges of the devices may also be protected by a edge protection coating to reduce the adverse affects of a lateral ingress of adverse environmental conditions. In some embodiments, inorganic materials, or a combination of inorganic and organic materials, are deposited over the device to form a edge protection coating which extends approximately 3 millimeter or less beyond the edges of the device. In other embodiments, the device may be encapsulated with an organic region, and with an inorganic region, or the device may be encapsulated with inorganic materials, which may form the edge protection coating and may be combined with ultra high barrier technology. The coatings formed over the device may extend beyond the edges of the device to ensure lateral protection.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: June 17, 2014
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, George Theodore Dalakos, Brian Joseph Scherer
  • Patent number: 8318265
    Abstract: Methods for improving coating or etching uniformity of non-conductive substrates in plasma-mediated processes generally include applying an electrically conductive coating to the non-conductive substrate prior to plasma processing. The electrically conductive coating is disposed in electrical communication with a metallic electrode of a plasma reactor. By disposing a conductive layer on the non-conductive substrate, a uniform electric potential is created during plasma processing can be built up on the non-conductive, which is equivalent to that of the metallic electrode upon which it is disposed during plasma processing.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: November 27, 2012
    Assignee: General Electric Company
    Inventors: Brian Joseph Scherer, Ahmet Gun Erlat, Min Yan
  • Patent number: 8034419
    Abstract: Disclosed is a method relating to graded-composition barrier coatings comprising first and second materials in first and second zones. The compositions of one or both zones vary substantially continuously across a thickness of the zone in order to achieve improved properties such as barrier, flexibility, adhesion, optics, thickness, and tact time. The graded-composition barrier coatings find utility in preventing exposure of devices such as organic electro-luminescent devices (OLEDs) to reactive species found in the environment.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 11, 2011
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, Anil Duggal, Min Yan, Sheila Tandon, Brian Joseph Scherer
  • Patent number: 8033885
    Abstract: In a method for depositing a barrier coating, a device is provided comprising a first portion and a second portion where a surface of the second portion is in a shadow zone. The device is pretreated wherein the pretreating alters a deposition rate of the barrier coating on a surface exposed to the pretreating. The shadow zone is substantially unexposed to the pretreating. A barrier coating is deposited wherein the barrier coating substantially conforms to a profile of the device. The coating may be a graded-composition barrier coating wherein a composition of the coating varies substantially continuously across a thickness thereof. The first portion may include a flexible, substantially transparent substrate. The second portion may include an electronic device. The barrier coating and first portion may encapsulate the second portion. The method is a single, commercially advantageous, barrier deposition process, enabling increased product throughput and low process tact time.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 11, 2011
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, George Theodore Dalakos, Min Yan, Shelia Neumann Tandon, Brian Joseph Scherer
  • Publication number: 20110151200
    Abstract: The present techniques provide systems and methods for protecting electronic devices, such as organic light emitting devices (OLEDs) from adverse environmental effects. The edges of the devices may also be protected by a edge protection coating to reduce the adverse affects of a lateral ingress of adverse environmental conditions. In some embodiments, inorganic materials, or a combination of inorganic and organic materials, are deposited over the device to form a edge protection coating which extends approximately 3 millimeter or less beyond the edges of the device. In other embodiments, the device may be encapsulated with an organic region, and with an inorganic region, or the device may be encapsulated with inorganic materials, which may form the edge protection coating and may be combined with ultra high barrier technology. The coatings formed over the device may extend beyond the edges of the device to ensure lateral protection.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ahmet Gun Erlat, George Theodore Dalakos, Brian Joseph Scherer
  • Publication number: 20110086183
    Abstract: The present techniques provide systems and methods for protecting electronic devices such as organic light emitting devices (OLEDs) from adverse environmental effects using a thin film encapsulation with reduced process time. In some embodiments, the process time of forming a graded barrier over the OLED structure may take less than 5 minutes, and may result in substantially similar barrier properties as those of metal and epoxy sealants and/or typical thin film encapsulations. The process time of forming the barrier may be reduced by increasing deposition rates for organic and/or inorganic materials, reducing the thicknesses of organic and/or inorganic layers, and/or varying the number of zones in the barrier.
    Type: Application
    Filed: October 12, 2009
    Publication date: April 14, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ahmet Gun Erlat, George Theodore Dalakos, Brian Joseph Scherer
  • Publication number: 20100079060
    Abstract: In a method for depositing a barrier coating, a device is provided comprising a first portion and a second portion where a surface of the second portion is in a shadow zone. The device is pretreated wherein the pretreating alters a deposition rate of the barrier coating on a surface exposed to the pretreating. The shadow zone is substantially unexposed to the pretreating. A barrier coating is deposited wherein the barrier coating substantially conforms to a profile of the device. The coating may be a graded-composition barrier coating wherein a composition of the coating varies substantially continuously across a thickness thereof. The first portion may include a flexible, substantially transparent substrate. The second portion may include an electronic device. The barrier coating and first portion may encapsulate the second portion. The method is a single, commercially advantageous, barrier deposition process, enabling increased product throughput and low process tact time.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ahmet Gun ERLAT, George Theodore DALAKOS, Min YAN, Sheila Neumann TANDON, Brian Joseph SCHERER
  • Publication number: 20100080929
    Abstract: An improvement of a baseline method for depositing a coating on a device having a surface where the surface includes a first portion and a second portion, where the second portion is in a shadow zone, and where the coating is deposited using a first predetermined set of process parameters having a first ratio of a thickness of the coating on the second portion to a thickness of the coating on the first portion. In the improved method, the coating is deposited using a second predetermined set of process parameters such that the coating substantially conforms to a profile of the device and a second ratio of a thickness of the coating on the second portion to a thickness of the coating on the first portion is greater than the first ratio. The method is a single, commercially advantageous deposition process, enabling increased product throughput and low process tact time.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: General Electric Company
    Inventors: Ahmet Gun ERLAT, George Theodore Dalakos, Min Yan, Sheila Neumann Tandon, Brian Joseph Scherer