Patents by Inventor Joseph Allen Eckstein

Joseph Allen Eckstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220000676
    Abstract: The present disclosure relates to methods for making elastomeric laminates that may be used as components of absorbent articles. In particular, discrete mechanical bonds are applied to a first substrate and a second substrate to secure elastic strands therebetween, wherein the discrete bonds are arranged intermittently along the machine direction. During the bonding process, heat and pressure are applied to the first substrate and the second substrate such that malleable materials of the first and second substrates deform to completely surround an outer perimeter of a discrete length of the stretched elastic strand. After removing the heat and pressure from the first and second substrates, the malleable materials harden to define a bond conforming with a cross sectional shape defined by the outer perimeter of the stretched elastic strand.
    Type: Application
    Filed: September 22, 2021
    Publication date: January 6, 2022
    Inventors: Uwe SCHNEIDER, Joseph Allen ECKSTEIN
  • Publication number: 20210401634
    Abstract: The present disclosure relates to methods for making elastomeric laminates that may be used as components of absorbent articles. The elastomeric laminates may include a first substrate, a second substrate, and an elastic material located between the first and second substrates. During assembly of an elastomeric laminate, a beam is rotated to unwind the elastic strands from the beam, wherein the strands may include a spin finish. First bonds are applied to bond discrete lengths of the stretched elastic strands with and between the first substrate and the second substrate, wherein the discrete first bonds are arranged intermittently along the machine direction. In addition, second bonds are applied between consecutive first bonds to bond the first and second substrates directly to each other, wherein the second bonds extend in the machine direction and may be separated from each other in a cross direction by at least one elastic strand.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Inventors: Uwe SCHNEIDER, Joseph Allen ECKSTEIN
  • Publication number: 20210401633
    Abstract: The present disclosure relates to methods for making elastomeric laminates that may be used as components of absorbent articles. Aspects of the methods for assembling elastomeric laminates may utilize elastic strands supplied from beams that may be joined with first and second substrates, and may be configured to carry out various types of operations, such as bonding and splicing operations.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Inventors: Uwe SCHNEIDER, Joseph Allen ECKSTEIN, Kazuaki TAMEISHI
  • Publication number: 20210378878
    Abstract: The present disclosure relates to methods for making elastomeric laminates that may be used as components of absorbent articles. Aspects of the methods for assembling elastomeric laminates may utilize elastic strands supplied from beams that may be joined with first and second substrates, and may be configured to carry out various types of operations, such as bonding and splicing operations.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Inventors: Uwe Schneider, Joseph Allen Eckstein
  • Publication number: 20210330513
    Abstract: The present disclosure relates to one or a combination of an absorbent article's chassis, inner leg cuffs, outer leg cuffs, ear panels, side panels, waistbands, and belts that may comprise one or more pluralities of tightly spaced (less than 4 mm, less than 3 mm, less than 2 mm, and less than 1 mm) and/or very fine (less than 300, less than 200, less than 100 dtex) and/or low strain (less than 300%, less than 200%, less than 100%) elastics to deliver low pressure less than 1 psi (according to the conditions defined by the Pressure-Under-Strand method below) under the elastics, while providing adequate modulus of (between about 2 gf/mm and 15 gf/mm) to make the article easy to apply and to comfortably maintain the article in place on the wearer, even with a loaded core (holding at least 50 mls of liquid), to provide for the advantages described above.
    Type: Application
    Filed: May 10, 2021
    Publication date: October 28, 2021
    Inventors: Gary Dean LaVON, Uwe SCHNEIDER, Bret Darren SEITZ, Sarah Marie Wade, Joseph Allen ECKSTEIN
  • Patent number: 11147717
    Abstract: The present disclosure relates to methods for making elastomeric laminates that may be used as components of absorbent articles. In particular, discrete mechanical bonds are applied to a first substrate and a second substrate to secure elastic strands therebetween, wherein the discrete bonds are arranged intermittently along the machine direction. During the bonding process, heat and pressure are applied to the first substrate and the second substrate such that malleable materials of the first and second substrates deform to completely surround an outer perimeter of a discrete length of the stretched elastic strand. After removing the heat and pressure from the first and second substrates, the malleable materials harden to define a bond conforming with a cross sectional shape defined by the outer perimeter of the stretched elastic strand.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: October 19, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Uwe Schneider, Joseph Allen Eckstein
  • Patent number: 11141321
    Abstract: The present disclosure relates to methods for making elastomeric laminates that may be used as components of absorbent articles. The elastomeric laminates may include a first substrate, a second substrate, and an elastic material located between the first and second substrates. During assembly of an elastomeric laminate, a beam is rotated to unwind the elastic strands from the beam, wherein the strands may include a spin finish. First bonds are applied to bond discrete lengths of the stretched elastic strands with and between the first substrate and the second substrate, wherein the discrete first bonds are arranged intermittently along the machine direction. In addition, second bonds are applied between consecutive first bonds to bond the first and second substrates directly to each other, wherein the second bonds extend in the machine direction and may be separated from each other in a cross direction by at least one elastic strand.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: October 12, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Uwe Schneider, Joseph Allen Eckstein
  • Patent number: 11141322
    Abstract: The present disclosure relates to methods for making elastomeric laminates that may be used as components of absorbent articles. Aspects of the methods for assembling elastomeric laminates may utilize elastic strands supplied from beams that may be joined with first and second substrates, and may be configured to carry out various types of operations, such as bonding and splicing operations.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 12, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Uwe Schneider, Joseph Allen Eckstein, Kazuaki Tameishi
  • Patent number: 11129753
    Abstract: The present disclosure relates to methods for making elastomeric laminates that may be used as components of absorbent articles. Aspects of the methods for assembling elastomeric laminates may utilize elastic strands supplied from beams that may be joined with first and second substrates, and may be configured to carry out various types of operations, such as bonding and splicing operations.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: September 28, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Uwe Schneider, Joseph Allen Eckstein
  • Patent number: 11123229
    Abstract: The present disclosure relates to methods and apparatuses for mechanically bonding substrates together. The apparatuses may include a pattern roll including a pattern element protruding radially outward. The pattern element includes a pattern surface and includes one or more channels adjacent the pattern surface. The pattern roll may be positioned adjacent an anvil roll to define a nip between the pattern surface and the anvil roll, wherein the pattern roll is biased toward the anvil roll to define a nip pressure between pattern surface and the anvil roll. As substrates advance between the pattern roll and anvil roll, the substrates are compressed between the anvil roll and the pattern surface to form a discrete bond region between the first and second substrates. As such, during the bonding process, some yielded substrate material flows from under the pattern surface and into the channel to form a channel grommet region.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 21, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Joseph Allen Eckstein, Hailing Bao, Robert Charles Dreisig, Howard Jay Kalnitz, Uwe Schneider
  • Publication number: 20210275362
    Abstract: The present disclosure relates to methods for making elastomeric laminates that may be used as components of absorbent articles. During assembly of the elastomeric laminate, elastic material may be advanced and stretched in a machine direction and joined with either or both first and second substrates advancing in the machine direction. The apparatuses according to the present disclosure may be configured with a plurality of spools, wherein each spool comprises a single elastic strand wound onto a core. The elastic strands are unwound from respective spools by rotating the spools about the cores. Neighboring elastic strands may be spaced or separated from each other at a desired distance in a cross direction by advancing the elastic strands through a strand guide that may comprise a plurality of tines or reeds. The assembled elastomeric laminate may then be accumulated by being wound onto a roll or festooned in a container.
    Type: Application
    Filed: March 2, 2021
    Publication date: September 9, 2021
    Inventors: Uwe SCHNEIDER, Joseph Allen ECKSTEIN, Masaharu NISHIKAWA, Randall Allen MYERS, Tina BROWN
  • Publication number: 20210259893
    Abstract: The present disclosure relates to absorbent articles comprising belts comprising one or more pluralities of tightly spaced (less than 4 mm, less than 3 mm, less than 2 mm, and less than 1 mm) and/or low decitex (less than 300, less than 200, less than 100 dtex) and/or low strain (less than 300%, less than 200%, less than 100%) elastics to deliver low pressure less than 1 psi (according to the conditions defined by the Pressure-Under-Strand Test in the Method below) under the elastics, while providing adequate modulus of (between about 2 gf/mm and 15 gf/mm), resulting in a Product Hip-to-Waist Silhouette from about 0.8 to about 1.1 and a Product Waist-to-Crotch Silhouette from about 0.8 to about 2.0 to provide for the advantages described above.
    Type: Application
    Filed: April 1, 2021
    Publication date: August 26, 2021
    Inventors: Gary Dean LaVON, Bret Darren SEITZ, Uwe SCHNEIDER, Sarah Marie WADE, Joseph Allen ECKSTEIN
  • Publication number: 20210251813
    Abstract: The present disclosure relates to one or a combination of an absorbent article's chassis, inner leg cuffs, outer leg cuffs, ear panels, side panels, waistbands, and belts that may comprise one or more pluralities of tightly spaced (less than 4 mm, less than 3 mm, less than 2 mm, and less than 1 mm) and/or very fine (less than 300, less than 200, less than 100 dtex) and/or low strain (less than 300%, less than 200%, less than 100%) elastics to deliver low pressure less than 1 psi (according to the conditions defined by the Pressure-Under-Strand method below) under the elastics, while providing adequate modulus of (between about 2 gf/mm and 15 gf/mm) to make the article easy to apply and to comfortably maintain the article in place on the wearer, even with a loaded core (holding at least 50 mls of liquid), to provide for the advantages described above.
    Type: Application
    Filed: March 31, 2021
    Publication date: August 19, 2021
    Inventors: Gary Dean LaVON, Uwe SCHNEIDER, Bret Darren SEITZ, Sarah Marie Wade, Joseph Allen ECKSTEIN
  • Publication number: 20210220183
    Abstract: The present disclosure relates to absorbent articles comprising belts comprising one or more pluralities of tightly spaced (less than 4 mm, less than 3 mm, less than 2 mm, and less than 1 mm) and/or low decitex (less than 300, less than 200, less than 100 dtex) and/or low strain (less than 300%, less than 200%, less than 100%) elastics to deliver low pressure less than 1 psi (according to the conditions defined by the Pressure-Under-Strand Test in the Method below) under the elastics, while providing adequate Section-Modulus of (between about 2 gf/mm and 15 gf/mm), resulting in a Product Length-to-Waist Silhouette that is within from about ?0.3 to about 0.3 of the Target Body Length-to-Waist Silhouette to make the article conform better to the body of the wearer at a lower Pressure-Under-Strand, even with a loaded core (holding at least 50 mls of liquid), to provide for the advantages described above.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Inventors: Gary Dean LaVON, Bret Darren SEITZ, Uwe SCHNEIDER, Sarah Marie WADE, Joseph Allen ECKSTEIN
  • Publication number: 20210205148
    Abstract: The present disclosure relates to one or a combination of an absorbent article's chassis, inner leg cuffs, outer leg cuffs, ear panels, side panels, waistbands, and belts that may comprise one or more pluralities of tightly spaced (less than 4 mm, less than 3 mm, less than 2 mm, and less than 1 mm) and/or low Average-Dtex (less than 300, less than 200, less than 100 dtex) and/or low Average-Pre-Strain (less than 300%, less than 200%, less than 100%) elastics to deliver low Pressure Under Strand (less than 1 psi according to the conditions defined by the Pressure-Under-Strand Test), while providing adequate Section-Modulus (between about 2 gf/mm and 15 gf/mm) to make the article easy to apply and to comfortably maintain the article in place on the wearer, even with a loaded core (holding at least 100 mls of liquid), to provide for the advantages described above.
    Type: Application
    Filed: March 18, 2021
    Publication date: July 8, 2021
    Inventors: Gary Dean LaVON, Uwe SCHNEIDER, Bret Darren SEITZ, Sarah Marie WADE, Joseph Allen ECKSTEIN
  • Publication number: 20210196526
    Abstract: The present disclosure relates to methods for assembling elastomeric laminates, wherein elastic material may be stretched and joined with either or both first and second substrates. A first beam is rotated to unwind a first plurality of elastic strands from the first beam in the machine direction. The first plurality of elastic strands are positioned between the first substrate and the second substrate to form the elastomeric laminate. Before the first plurality of elastic strands are completely unwound from the first beam, a second beam is rotated to unwind the second plurality of elastic strands from the second beam. Subsequently, the advancement of the first plurality of elastic strands from the first beam is discontinued. Thus, the elastomeric laminate assembly process may continue uninterrupted while switching from an initially utilized elastic material drawn from the first beam to a subsequently utilized elastic material drawn from the second beam.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Inventors: Uwe SCHNEIDER, Joseph Allen ECKSTEIN
  • Publication number: 20210186766
    Abstract: The present disclosure relates to absorbent article's chassis that may comprise one or more pluralities of tightly spaced (less than 4 mm, less than 3 mm, less than 2 mm, and less than 1 mm) and/or low decitex (less than 300, less than 200, less than 100 dtex) and/or low strain (less than 300%, less than 200%, less than 100%) elastics to deliver low pressure less than 1 psi (according to the conditions defined by the Pressure-Under-Strand Test in the Method below) under the elastics. The elastics in the chassis may be oriented parallel or transverse to the longitudinal axis.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 24, 2021
    Inventors: Gary Dean LaVON, Uwe SCHNEIDER, Bret Darren SEITZ, Sarah Marie WADE, Joseph Allen ECKSTEIN
  • Publication number: 20210186767
    Abstract: The present disclosure relates to methods for assembling elastomeric laminates, wherein elastic material may be stretched and joined with either or both first and second substrates. First spools are rotated to unwind first elastic strands from a first unwinder in a machine direction. The first elastic strands are positioned between the first substrate and the second substrate to form an elastomeric laminate. Before the first elastic strands are completely unwound from the rotating first spools, second spools are rotated to unwind second elastic strands from a second unwinder. Subsequently, the advancement of the first elastic strands from the first unwinder is discontinued. Thus, the elastomeric laminate assembly process may continue uninterrupted while switching from an initially utilized elastic material drawn from the first spools to a subsequently utilized elastic material drawn from the second spools.
    Type: Application
    Filed: March 4, 2021
    Publication date: June 24, 2021
    Inventors: Uwe Schneider, Joseph Allen Eckstein
  • Patent number: 11000420
    Abstract: The present disclosure relates to one or a combination of an absorbent article's chassis, inner leg cuffs, outer leg cuffs, ear panels, side panels, waistbands, and belts that may comprise one or more pluralities of tightly spaced (less than 4 mm, less than 3 mm, less than 2 mm, and less than 1 mm) and/or very fine (less than 300, less than 200, less than 100 dtex) and/or low strain (less than 300%, less than 200%, less than 100%) elastics to deliver low pressure less than 1 psi (according to the conditions defined by the Pressure-Under-Strand method below) under the elastics, while providing adequate modulus of (between about 2 gf/mm and 15 gf/mm) to make the article easy to apply and to comfortably maintain the article in place on the wearer, even with a loaded core (holding at least 50 mls of liquid), to provide for the advantages described above.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: May 11, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Gary Dean LaVon, Uwe Schneider, Bret Darren Seitz, Sarah Marie Wade, Joseph Allen Eckstein
  • Patent number: 11000421
    Abstract: The present disclosure relates to absorbent articles comprising belts comprising one or more pluralities of tightly spaced (less than 4 mm, less than 3 mm, less than 2 mm, and less than 1 mm) and/or low decitex (less than 300, less than 200, less than 100 dtex) and/or low strain (less than 300%, less than 200%, less than 100%) elastics to deliver low pressure less than 1 psi (according to the conditions defined by the Pressure-Under-Strand Test in the Method below) under the elastics, while providing adequate Section-Modulus of (between about 2 gf/mm and 15 gf/mm), resulting in a Product Length-to-Waist Silhouette that is within from about ?0.3 to about 0.3 of the Target Body Length-to-Waist Silhouette to make the article conform better to the body of the wearer at a lower Pressure-Under-Strand, even with a loaded core (holding at least 50 mls of liquid), to provide for the advantages described above.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: May 11, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Gary Dean LaVon, Bret Darren Seitz, Uwe Schneider, Sarah Marie Wade, Joseph Allen Eckstein