Patents by Inventor Joseph C. Holzer

Joseph C. Holzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190203378
    Abstract: Methods for removing a melt of silicon from a crucible used in a silicon ingot growth process and associated wick assemblies are disclosed. The wick is made of porous carbon that ignites upon reaching an ignition temperature causing relatively rapid and relatively large volume take-up of silicon from the crucible.
    Type: Application
    Filed: December 18, 2018
    Publication date: July 4, 2019
    Inventors: Bayard K. Johnson, Henry Frank Erk, Steven Lee Garner, John Gibbons, Anthony Thomas Berhorst, Joseph C. Holzer, Benjamin Michael Meyer, Parthiv Daggolu, Arash Mehdizadeh Dehkordi, Shawn Wesley Hayes
  • Patent number: 8398765
    Abstract: A system for growing silicon crystals that facilitates controlling a shape of a melt-solid interface is described. The crystal growing system includes a heated crucible including a semiconductor melt from which a monocrystalline ingot is grown according to a Czochralski process. The ingot is grown on a seed crystal pulled from the melt. The method includes applying an unbalanced cusped magnetic field to the melt, and rotating the ingot and the crucible in the same direction while the ingot is being pulled from the melt.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: March 19, 2013
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Hariprasad Sreedharamurthy, Milind Kulkarni, Richard G. Schrenker, Joseph C. Holzer, Harold W. Korb
  • Publication number: 20090320743
    Abstract: A system for growing silicon crystals that facilitates controlling a shape of a melt-solid interface is described. The crystal growing system includes a heated crucible including a semiconductor melt from which a monocrystalline ingot is grown according to a Czochralski process. The ingot is grown on a seed crystal pulled from the melt. The method includes applying an unbalanced cusped magnetic field to the melt, and rotating the ingot and the crucible in the same direction while the ingot is being pulled from the melt.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 31, 2009
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Hariprasad Sreedharamurthy, Milind S. Kulkarni, Richard G. Schrenker, Joseph C. Holzer, Harold W. Korb
  • Patent number: 7573587
    Abstract: A method of continuously measuring an elevation and shape of an unmelted polycrystalline silicon island during a silicon meltdown process. The method comprises projecting a focused bright light on the silicon island to produce a bright dot on the silicon island. The method also includes electronically determining an elevation and a shape of the silicon island by tracking the bright dot during the meltdown process.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: August 11, 2009
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Zheng Lu, Steven L. Kimbel, Robert H. Fuerhoff, Joseph C. Holzer
  • Patent number: 7442253
    Abstract: The present invention is directed to a process for producing a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects. The process either comprises exposing the wafer's front and back surfaces to different atmospheres, or thermally annealing two wafers in a face-to-face arrangement.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: October 28, 2008
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 7229693
    Abstract: The present invention is directed to a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: June 12, 2007
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 7097718
    Abstract: Epitaxial wafers comprising a single crystal silicon substrate comprising agglomerated vacancy defects and having an axially symmetric region in which silicon self-interstitials are the predominant intrinsic point defect and which is substantially free of agglomerated defects, and an epitaxial layer which is deposited upon a surface of the substrate and which is substantially free of grown-in defects caused by the presence of agglomerated intrinsic point defects on the substrate surface upon which the epitaxial layer is deposited.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: August 29, 2006
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Luciano Mule'Stagno, Lu Fei, Joseph C. Holzer, Harold W. Korb, Robert J. Falster
  • Patent number: 6896728
    Abstract: The present invention is directed to a process for producing a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects. The process including growing a single crystal silicon ingot from molten silicon, and as part of the growth process, controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: May 24, 2005
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6840997
    Abstract: The present invention relates to a process for growing a single crystal silicon. The process including controlling a growth velocity, v, and an average axial temperature gradient, G0, during the growth of the constant diameter portion of the crystal over the temperature range from solidification to a temperature of no less than about 1325° C., to cause the formation of a first axially symmetrical region in which vacancies, upon cooling of the ingot from the solidification temperature, are the predominant intrinsic point defect and which is substantially free of agglomerated intrinsic point defects, wherein the first axially symmetric region has a width of at least about 50% of the radius of the constant diameter portion of the ingot.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: January 11, 2005
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20040089224
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects, and a process for the preparation thereof.
    Type: Application
    Filed: October 14, 2003
    Publication date: May 13, 2004
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20040070012
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects, and a process for the preparation thereof. The process comprises controlling growth conditions, such as growth velocity, v, instantaneous axial temperature gradient, G0, and the cooling rate, within a range of temperatures at which silicon self-interstitials are mobile, in order to prevent the formation of these agglomerated defects. In ingot form, the axially symmetric region has a width, as measured from the circumferential edge of the ingot radially toward the central axis, which is at least about 30% the length of the radius of the ingot. The axially symmetric region additionally has a length, as measured along the central axis, which is at least about 20% the length of the constant diameter portion of the ingot.
    Type: Application
    Filed: August 12, 2003
    Publication date: April 15, 2004
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer
  • Publication number: 20040025782
    Abstract: The present invention is directed to a process for producing a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects. The process including growing a single crystal silicon ingot from molten silicon, and as part of the growth process, controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Application
    Filed: February 25, 2003
    Publication date: February 12, 2004
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20030205191
    Abstract: Epitaxial wafers comprising a single crystal silicon substrate comprising agglomerated vacancy defects and having an axially symmetric region in which silicon self-interstitials are the predominant intrinsic point defect and which is substantially free of agglomerated defects, and an epitaxial layer which is deposited upon a surface of the substrate and which is substantially free of grown-in defects caused by the presence of agglomerated intrinsic point defects on the substrate surface upon which the epitaxial layer is deposited.
    Type: Application
    Filed: May 20, 2003
    Publication date: November 6, 2003
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Luciano Mule ' Stagno, Lu Fei, Joseph C. Holzer, Harold W. Korb, Robert J. Falster
  • Publication number: 20030196587
    Abstract: The present invention relates to a process for growing a single crystal silicon ingot, which contains an axially symmetric region having a predominant intrinsic point defect and which is substantially free of agglomerated intrinsic point defects in that region. The process comprising cooling the ingot from the temperature of solidification to a temperature of less than 800° C. and, as part of said cooling step, quench cooling a region of the constant diameter portion of the ingot having a predominant intrinsic point defect through the temperature of nucleation for the agglomerated intrinsic point defects for the intrinsic point defects which predominate in the region.
    Type: Application
    Filed: May 6, 2003
    Publication date: October 23, 2003
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Kirk D. McCallum, W. Brock Alexander, Mohsen Banan, Robert J. Falster, Joseph C. Holzer, Bayard K. Johnson, Chang Bum Kim, Steven L. Kimbel, Zheng Lu, Paolo Mutti, Vladimir V. Voronkov, Luciano Mule'Stagno, Jeffrey L. Libbert
  • Patent number: 6635587
    Abstract: A process for heat treating a silicon wafer to dissolve B-type agglomerated interstitial defects present therein. The process includes heating the silicon wafer at a temperature for a time sufficient to dissolve B-defects, the wafer being heated to said temperature at a rate sufficient to prevent B-defects from becoming stabilized such that these defects are rendered incapable of being dissolved.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: October 21, 2003
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Luciano Mule'Stagno, Jeffrey L. Libbert, Joseph C. Holzer
  • Patent number: 6632278
    Abstract: The present invention relates to an epitaxial wafer comprising single crystal silicon substrate and an epitaxial layer deposited thereon. The substrate comprises an axially symmetric region which is free of agglomerated intrinsic point defects and wherein silicon self-interstitials are the predominant intrinsic point defect in the axially symmetric region. The present invention further relates to a process for producing such an epitaxial wafer.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: October 14, 2003
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6605150
    Abstract: The present invention relates to a single crystal silicon, in wafer and ingot form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects. The region extends from a circumferential edge of the wafer or constant diameter region of an ingot, axially inwardly toward a central axis such that the entire wafer, a constant diameter portion of the ingot, or an annular-shaped portion of wafer or ingot is free of agglomerated intrinsic point defects. The present invention further relates to these axially symmetric regions wherein silicon self-interstitials are the predominant intrinsic point detect.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: August 12, 2003
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer
  • Patent number: 6565649
    Abstract: The present invention is directed to an epitaxial wafer comprising a single crystal silicon substrate having an axially symmetric region in which silicon self-interstitials are the predominant intrinsic point defect and which is substantially free of agglomerated defects, and an epitaxial layer which is deposited upon a surface of the substrate and which is substantially free of grown-in defects caused by the presence of agglomerated silicon self-interstitial defects on the substrate surface upon which the epitaxial layer is deposited.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: May 20, 2003
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Luciano Mule′Stagno, Lu Fei, Joseph C. Holzer, Harold W. Korb, Robert J. Falster
  • Patent number: 6555194
    Abstract: The present invention is directed to a process for producing a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects. The process including growing a single crystal silicon ingot from molten silicon, and as part of the growth process, controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: April 29, 2003
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20030051657
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated vacancy intrinsic point defects, wherein the first axially symmetric region has a width which is at least about 50% of the length of the radius of the ingot, and a process for the preparation thereof.
    Type: Application
    Filed: July 3, 2002
    Publication date: March 20, 2003
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson