Patents by Inventor Joseph C. Kaufman

Joseph C. Kaufman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8114596
    Abstract: The described method provides, methods, and kits to produce, identify, catalog and classify a comprehensive collection of nucleic acid targets produced from a nucleic acid sample. The method, referred to as Cataloging and Classification of Sequence Tags, involves generating a set of target nucleic acid fragments; coupling the target nucleic acid fragments to a nucleic acid bridge comprising, for example, two or more primer binding sites and two recognition sites for cleavage at a site offset from the recognition site to the fragment's end; and cleaving the fragments to generate chimeric nucleic acids of known length. The nucleic acid bridge is thus disposed between the two nucleic acid fragments in the chimeric nucleic acid. The resulting duplex nucleic acids comprise a set of sequence tags (i.e., by amplification using universal primers), comprising an addressable portion, a target nucleic portion and a portion of the nucleic acid bridge.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: February 14, 2012
    Inventor: Joseph C. Kaufman
  • Publication number: 20100055745
    Abstract: The described method provides, methods, and kits to produce, identify, catalog and classify a comprehensive collection of nucleic acid targets produced from a nucleic acid sample. The method, referred to as Cataloging and Classification of Sequence Tags, involves generating a set of target nucleic acid fragments; coupling the target nucleic acid fragments to a nucleic acid bridge comprising, for example, two or more primer binding sites and two recognition sites for cleavage at a site offset from the recognition site to the fragment's end; and cleaving the fragments to generate chimeric nucleic acids of known length. The nucleic acid bridge is thus disposed between the two nucleic acid fragments in the chimeric nucleic acid. The resulting duplex nucleic acids comprise a set of sequence tags (i.e., by amplification using universal primers), comprising an addressable portion, a target nucleic portion and a portion of the nucleic acid bridge.
    Type: Application
    Filed: October 9, 2009
    Publication date: March 4, 2010
    Inventor: Joseph C. Kaufman
  • Patent number: 7618778
    Abstract: The described method provides, methods, and kits to produce, identify, catalog and classify a comprehensive collection of nucleic acid targets produced from a nucleic acid sample. The method, referred to as Cataloging and Classification of Sequence Tags, involves generating a set of target nucleic acid fragments; coupling the target nucleic acid fragments to a nucleic acid bridge comprising, for example, two or more primer binding sites and two recognition sites for cleavage at a site offset from the recognition site to the fragment's end; and cleaving the fragments to generate chimeric nucleic acids of known length. The nucleic acid bridge is thus disposed between the two nucleic acid fragments in the chimeric nucleic acid. The resulting duplex nucleic acids comprise a set of sequence tags (i.e., by amplification using universal primers), comprising an addressable portion, a target nucleic portion and a portion of the nucleic acid bridge.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: November 17, 2009
    Inventor: Joseph C. Kaufman
  • Publication number: 20040265888
    Abstract: Disclosed is a method for the comprehensive analysis of nucleic acid samples and a detector composition for use in the method. The method, referred to as Binary Encoded Sequence Tags (BEST), involves generation of a set of nucleic acid fragments; adding an adaptor to the ends containing recognition site for cleavage at a site offset from the recognition site; cleaving the fragment to generate fragments having a plurality sticky ends; indexing of the fragments into sets based on the sequence of sticky ends. The fragments are indexed by adding a offset adaptor to newly generated ends. A different adaptor will be coupled to each different sticky end. The resulting fragments—which will have defined ends, be of equal lengths (in preferred embodiment), and a central sequence derived from the source nucleic acid molecule—are binary sequence tags. The binary sequence tags can be used and further analyzed in numerous ways.
    Type: Application
    Filed: June 21, 2004
    Publication date: December 30, 2004
    Inventors: Joseph C. Kaufman, Matthew E. Roth, Paul M. Lizardi, Li Feng, Darin R. Latimer
  • Patent number: 6773886
    Abstract: Disclosed is a method for the comprehensive analysis of nucleic acid samples and a detector composition for use in the method. The method, referred to as Binary Encoded Sequence Tags (BEST), involves generation of a set of nucleic acid fragments; adding an adaptor to the ends containing recognition site for cleavage at a site offset from the recognition site; cleaving the fragment to generate fragments having a plurality sticky ends; indexing of the fragments into sets based on the sequence of sticky ends. The fragments are indexed by adding a offset adaptor to newly generated ends. A different adaptor will be coupled to each different sticky end. The resulting fragments—which will have defined ends, be of equal lengths (in preferred embodiment), and a central sequence derived from the source nucleic acid molecule—are binary sequence tags. The binary sequence tags can be used and further analyzed in numerous ways.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: August 10, 2004
    Assignees: Yale University, Agilix Corporation
    Inventors: Joseph C. Kaufman, Matthew E. Roth, Paul M. Lizardi, Li Feng, Darin R. Latimer
  • Patent number: 6677121
    Abstract: Disclosed is a method for the comprehensive analysis of nucleic acid samples and a detector composition for use in the method. The method, referred to as Fixed Address Analysis of Sequence Tags (FAAST), involves generation of a set of nucleic acid fragments having a variety of sticky end sequences; indexing of the fragments into sets based on the sequence of sticky ends; associating a detector sequence with the fragments; sequence-based capture of the indexed fragments on a detector array; and detection of the fragment labels. Generation of the multiple sticky end sequences is accomplished by incubating the nucleic acid sample with one or more nucleic acid cleaving reagents. The indexed fragments are captured by hybridization and coupling, preferably by ligation, to a probe. The method allows a complex sample of nucleic acid to be quickly and easily cataloged in a reproducible and sequence-specific manner.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: January 13, 2004
    Assignees: Agilix Corporation, Yale University
    Inventors: Paul M. Lizardi, Matthew E. Roth, Li Feng, Cesar E. Guerra, Shane C. Weber, Joseph C. Kaufman, Darin R. Latimer
  • Publication number: 20030082556
    Abstract: Disclosed is a method for the comprehensive analysis of nucleic acid samples and a detector composition for use in the method. The method, referred to as Binary Encoded Sequence Tags (BEST), involves generation of a set of nucleic acid fragments; adding an adaptor to the ends containing recognition site for cleavage at a site offset from the recognition site; cleaving the fragment to generate fragments having a plurality sticky ends; indexing of the fragments into sets based on the sequence of sticky ends. The fragments are indexed by adding a offset adaptor to newly generated ends. A different adaptor will be coupled to each different sticky end. The resulting fragments—which will have defined ends, be of equal lengths (in preferred embodiment), and a central sequence derived from the source nucleic acid molecule—are binary sequence tags. The binary sequence tags can be used and further analyzed in numerous ways.
    Type: Application
    Filed: November 26, 2001
    Publication date: May 1, 2003
    Applicant: Yale University
    Inventors: Joseph C. Kaufman, Matthew E. Roth, Paul M. Lizardi, Li Feng, Darin R. Latimer
  • Publication number: 20020106649
    Abstract: Disclosed is a method for the comprehensive analysis of nucleic acid samples and a detector composition for use in the method. The method, referred to as Fixed Address Analysis of Sequence Tags (FAAST), involves generation of a set of nucleic acid fragments having a variety of sticky end sequences; indexing of the fragments into sets based on the sequence of sticky ends; associating a detector sequence with the fragments; sequence-based capture of the indexed fragments on a detector array; and detection of the fragment labels. Generation of the multiple sticky end sequences is accomplished by incubating the nucleic acid sample with one or more nucleic acid cleaving reagents. The indexed fragments are captured by hybridization and coupling, preferably by ligation, to a probe. The method allows a complex sample of nucleic acid to be quickly and easily cataloged in a reproducible and sequence-specific manner.
    Type: Application
    Filed: May 15, 2001
    Publication date: August 8, 2002
    Applicant: Yale University
    Inventors: Paul M. Lizardi, Matthew E. Roth, Li Feng, Cesar E. Guerra, Shane C. Weber, Joseph C. Kaufman, Darin R. Latimer
  • Patent number: 6383754
    Abstract: Disclosed is a method for the comprehensive analysis of nucleic acid samples and a detector composition for use in the method. The method, referred to as Binary Encoded Sequence Tags (BEST), involves generation of a set of nucleic acid fragments; adding an adaptor to the ends containing recognition site for cleavage at a site offset from the recognition site; cleaving the fragment to generate fragments having a plurality sticky ends; indexing of the fragments into sets based on the sequence of sticky ends. The fragments are indexed by adding a offset adaptor to newly generated ends. A different adaptor will be coupled to each different sticky end. The resulting fragments—which will have defined ends, be of equal lengths (in preferred embodiment), and a central sequence derived from the source nucleic acid molecule—are binary sequence tags. The binary sequence tags can be used and further analyzed in numerous ways.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: May 7, 2002
    Assignees: Yale University, Agilix Corporation
    Inventors: Joseph C. Kaufman, Matthew E. Roth, Paul M. Lizardi, Li Feng, Darin R. Latimer
  • Patent number: 6261782
    Abstract: Disclosed is a method for the comprehensive analysis of nucleic acid samples and a detector composition for use in the method. The method, referred to as Fixed Address Analysis of Sequence Tags (FAAST), involves generation of a set of nucleic acid fragments having a variety of sticky end sequences; indexing of the fragments into sets based on the sequence of sticky ends; associating a detector sequence with the fragments; sequence-based capture of the indexed fragments on a detector array; and detection of the fragment labels. Generation of the multiple sticky end sequences is accomplished by incubating the nucleic acid sample with one or more nucleic acid cleaving reagents. The indexed fragments are captured by hybridization and coupling, preferably by ligation, to a probe. The method allows a complex sample of nucleic acid to be quickly and easily cataloged in a reproducible and sequence-specific manner.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: July 17, 2001
    Assignee: Yale University
    Inventors: Paul M. Lizardi, Matthew E. Roth, Li Feng, Cesar E. Guerra, Shane C. Weber, Joseph C. Kaufman, Darin R. Latimer