Patents by Inventor Joseph Carr Meyers

Joseph Carr Meyers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10328915
    Abstract: Various methods of detecting or controlling vehicle stability are disclosed. Certain embodiments provide a method for performing hill hold control for a vehicle, a method for detecting a vehicle sliding into loss of control, and/or a method for controlling a vehicle's sliding into loss of control. Methods for detecting sliding into loss of control may include comparing the vehicle's longitudinal velocity gradient with a reference speed computed from wheel speed sensors inputs and/or detecting a lateral velocity of the vehicle and a longitudinal velocity of the vehicle when vehicle sliding is detected. Methods for control may include calculating a vehicle pitch angle from the lateral acceleration, the longitudinal acceleration, the yaw rate, the roll rate, and the pitch rate, calculating a longitudinal velocity gradient from the vehicle pitch angle, and/or calculating a sideslip angle.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: June 25, 2019
    Assignee: FORD GLOBAL TCHNOLOGIES, LLC
    Inventors: Jianbo Lu, Leonard K. Johnson, Joseph Carr Meyers
  • Publication number: 20160339884
    Abstract: A vehicle stability control system comprises a 5-sensor cluster and a stability controller configured to communicate with the 5-sensor cluster and receive signals corresponding to a lateral acceleration, a longitudinal acceleration, a yaw rate, a roll rate, and a pitch rate from the 5-sensor cluster. The stability controller can also be configured to determine a braking amount or a throttle amount to maintain vehicle stability. The system also comprises a brake controller configured to communicate with the stability controller and receive a braking request from the stability controller, and a throttle controller configured to communicate with the stability controller and receive a throttle request from the stability controller. The system may also comprise a braking or throttling command computed based on various scenarios detected by measured and calculated signals.
    Type: Application
    Filed: May 23, 2016
    Publication date: November 24, 2016
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Jianbo LU, Leonard K. JOHNSON, Joseph Carr MEYERS
  • Patent number: 9352731
    Abstract: A vehicle stability control system comprises a 5-sensor cluster and a stability controller configured to communicate with the 5-sensor cluster and receive signals corresponding to a lateral acceleration, a longitudinal acceleration, a yaw rate, a roll rate, and a pitch rate from the 5-sensor cluster. The stability controller can also be configured to determine a braking amount or a throttle amount to maintain vehicle stability. The system also comprises a brake controller configured to communicate with the stability controller and receive a braking request from the stability controller, and a throttle controller configured to communicate with the stability controller and receive a throttle request from the stability controller. The system may also comprise a braking or throttling command computed based on various scenarios detected by measured and calculated signals.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: May 31, 2016
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Jianbo Lu, Leonard K. Johnson, Joseph Carr Meyers
  • Patent number: 9162656
    Abstract: A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: October 20, 2015
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Keith Glenn Mattson, Todd Allen Brown, Joseph Carr Meyers, Michael Edward Brewer
  • Patent number: 8682560
    Abstract: A method and system for controlling vehicle stability may comprise determining whether a vehicle is oversteering or understeering and, if the vehicle is oversteering or understeering, determining an amount by which to reduce a speed of the vehicle to correct for understeering or oversteering and applying brake pressure to at least the rear brakes of the vehicle to reduce vehicle speed. The method and system also may comprise determining an engine torque reduction amount based on vehicle oversteer or understeer conditions, reducing engine torque by the determined amount or to zero if the determined amount of engine torque reduction is greater than an actual engine torque, and applying braking to at least the rear brakes of the vehicle if the determined amount of engine torque reduction is greater than the actual engine torque.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: March 25, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Carr Meyers, Daniel Domek Eisele, Todd Allen Brown, Li Xu, Albert Chenouda Salib
  • Publication number: 20140012477
    Abstract: A vehicle stability control system comprises a 5-sensor cluster and a stability controller configured to communicate with the 5-sensor cluster and receive signals corresponding to a lateral acceleration, a longitudinal acceleration, a yaw rate, a roll rate, and a pitch rate from the 5-sensor cluster. The stability controller can also be configured to determine a braking amount or a throttle amount to maintain vehicle stability. The system also comprises a brake controller configured to communicate with the stability controller and receive a braking request from the stability controller, and a throttle controller configured to communicate with the stability controller and receive a throttle request from the stability controller. The system may also comprise a braking or throttling command computed based on various scenarios detected by measured and calculated signals.
    Type: Application
    Filed: August 28, 2013
    Publication date: January 9, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Jianbo LU, Leonard K. JOHNSON, Joseph Carr MEYERS
  • Patent number: 8565993
    Abstract: An enhanced stability control system (200) for a vehicle includes a vehicle status sensor that generates a sensor signal. A driver input sensor that generates an input signal. A controller (214) may disable normal yaw stability control operation and enable body-force-disturbance (BFD) yaw stability control (YSC) operation, which includes at least partially reducing response functions of the normal yaw stability control associated with the input signal, in response to the sensor signal and performing BFD-YSC functions to achieve desired control performance upon the detection of BFD reception. The controller (214) may also or alternatively compare the sensor signal to a threshold and detect an improperly functioning/inoperative vehicle status sensor. The controller (214) disregards information associated with the improperly functioning/inoperative vehicle status sensor, and continues to perform enhanced yaw stability control operations.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: October 22, 2013
    Assignee: Volvo Car Corporation
    Inventors: Jlanbo Lu, Joseph Carr Meyers, Jeffrey Dan Rupp, Bengt Johan Henrik Jacobson, Mathijs Willem Geurink, Doug Scott Rhode, Olle Johansson
  • Patent number: 8532906
    Abstract: A vehicle stability control system comprises a 5-sensor cluster and a stability controller configured to communicate with the 5-sensor cluster and receive signals corresponding to a lateral acceleration, a longitudinal acceleration, a yaw rate, a roll rate, and a pitch rate from the 5-sensor cluster. The stability controller can also be configured to determine a braking amount or a throttle amount to maintain vehicle stability. The system also comprises a brake controller configured to communicate with the stability controller and receive a braking request from the stability controller, and a throttle controller configured to communicate with the stability controller and receive a throttle request from the stability controller. The system may also comprise a braking or throttling command computed based on various scenarios detected by measured and calculated signals.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: September 10, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianbo Lu, Leonard K. Johnson, Joseph Carr Meyers
  • Publication number: 20120209490
    Abstract: A vehicle stability control system comprises a 5-sensor cluster and a stability controller configured to communicate with the 5-sensor cluster and receive signals corresponding to a lateral acceleration, a longitudinal acceleration, a yaw rate, a roll rate, and a pitch rate from the 5-sensor cluster. The stability controller can also be configured to determine a braking amount or a throttle amount to maintain vehicle stability. The system also comprises a brake controller configured to communicate with the stability controller and receive a braking request from the stability controller, and a throttle controller configured to communicate with the stability controller and receive a throttle request from the stability controller. The system may also comprise a braking or throttling command computed based on various scenarios detected by measured and calculated signals.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 16, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC.
    Inventors: Jianbo LU, Leonard K. JOHNSON, Joseph Carr MEYERS
  • Publication number: 20120185142
    Abstract: A method and system for controlling vehicle stability may comprise determining whether a vehicle is oversteering or understeering and, if the vehicle is oversteering or understeering, determining an amount by which to reduce a speed of the vehicle to correct for understeering or oversteering and applying brake pressure to at least the rear brakes of the vehicle to reduce vehicle speed. The method and system also may comprise determining an engine torque reduction amount based on vehicle oversteer or understeer conditions, reducing engine torque by the determined amount or to zero if the determined amount of engine torque reduction is greater than an actual engine torque, and applying braking to at least the rear brakes of the vehicle if the determined amount of engine torque reduction is greater than the actual engine torque.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 19, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Joseph Carr MEYERS, Daniel Domek EISELE, Todd Allen BROWN, Li XU, Albert Chenouda SALIB
  • Patent number: 8170767
    Abstract: A method and system for controlling vehicle stability may comprise determining whether a vehicle is oversteering or understeering and, if the vehicle is oversteering or understeering, determining an amount by which to reduce a speed of the vehicle to correct for understeering or oversteering and applying brake pressure to at least the rear brakes of the vehicle to reduce vehicle speed. The method and system also may comprise determining an engine torque reduction amount based on vehicle oversteer or understeer conditions, reducing engine torque by the determined amount or to zero if the determined amount of engine torque reduction is greater than an actual engine torque, and applying braking to at least the rear brakes of the vehicle if the determined amount of engine torque reduction is greater than the actual engine torque.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 1, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Carr Meyers, Daniel Domek Eisele, Todd Allen Brown, Li Xu, Albert Chenouda Salib
  • Publication number: 20110166744
    Abstract: An enchanced stability control system (200) for a vehicle includes a vehicle status sensor that generates a sensor signal. A driver input sensor that generates an input signal. A controller (214) may disable normal yaw stability control operation and enable body-force- disturbance (BDF) yaw stability control (YSC) operation, which includes at least partially reducing response functions of the normal yaw stability control associated with the input signal, in response to the sensor signal and performing BFD-YSC functions to achieve desired control performance upon the detection of BFD reception. The controller (214) may also or alternatively compare the sensor signal to a threshold and detect an improperly functioning/inoperative vehicle status sensor. The controller (214) disregards information associated with the improperly functioning/inoperative vehicle status sensor, and continues to perform enhanced yaw stability control operations.
    Type: Application
    Filed: October 11, 2006
    Publication date: July 7, 2011
    Inventors: Jlanbo Lu, Joseph Carr Meyers, Jeffrey Dan Rupp, Bengt Johan Henrik Jacobson, Mathijs Geurink, Doug Scott Rhode, Olle Johansson
  • Patent number: 7881850
    Abstract: A control system (18) for an automotive vehicle (10) has a first roll condition detector (64A), a second roll condition detector (64B), a third roll condition detector (64C), and a controller (26) that uses the roll condition generated by the roll condition detectors (64A-C) to determine a wheel lift condition. Other roll condition detectors may also be used in the wheel lift determination. The wheel lift conditions may be active or passive or both.
    Type: Grant
    Filed: January 27, 2008
    Date of Patent: February 1, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Michael Edward Brewer, Todd Allen Brown, Joseph Carr Meyers
  • Publication number: 20100145574
    Abstract: A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 10, 2010
    Inventors: Keith Glenn Mattson, Todd Allen Brown, Joseph Carr Meyers, Michael Edward Brewer
  • Patent number: 7688191
    Abstract: A control system (18) for an automotive vehicle (10) has a first roll condition detector (64A), a second roll condition detector (64B), a third roll condition detector (64C), and a controller (26) that uses the roll condition generated by the roll condition detectors (64A-C) to determine a wheel lift condition. Other roll condition detectors may also be used in the wheel lift determination. The wheel lift conditions may be active or passive or both.
    Type: Grant
    Filed: January 27, 2008
    Date of Patent: March 30, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianbo Lu, Michael Edward Brewer, Todd Allen Brown, Joseph Carr Meyers
  • Patent number: 7653471
    Abstract: A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: January 26, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Keith Glenn Mattson, Todd Allen Brown, Joseph Carr Meyers, Michael Edward Brewer
  • Patent number: 7650215
    Abstract: A vehicle control system includes a housed sensor cluster generating a plurality of signals. An integrated controller includes a sensor signal compensation unit and a kinematics unit, wherein the sensor signal compensation unit receives at least one of the plurality of signals and compensates for an offset within the signal and generates a compensated signal as a function thereof. The integrated controller further generates a kinematics signal including a sensor frame with respect to an intermediate axis system as a function of the compensated signal and generates a vehicle frame signal as a function of the kinematics signal. A dynamic system controller receives the vehicle frame signal and generates a dynamic control signal in response thereto. A safety device controller receives the dynamic control signal and further generates a safety device signal in response thereto.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: January 19, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianbo Lu, Todd Allen Brown, Li Xu, Joseph Carr Meyers
  • Patent number: 7630805
    Abstract: A vehicle control system includes a housed sensor cluster generating a plurality of signals. An integrated controller includes a sensor signal compensation unit and a kinematics unit, wherein the sensor signal compensation unit receives at least one of the plurality of signals and compensates for an offset within the signal and generates a compensated signal as a function thereof. The integrated controller further generates a kinematics signal including a sensor frame with respect to an intermediate axis system as a function of the compensated signal and generates a vehicle frame signal as a function of the kinematics signal. A dynamic system controller receives the vehicle frame signal and generates a dynamic control signal in response thereto. A safety device controller receives the dynamic control signal and further generates a safety device signal in response thereto.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 8, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianbo Lu, Todd Allen Brown, Li Xu, Joseph Carr Meyers
  • Patent number: 7602279
    Abstract: A control system (18) for an automotive vehicle (10) has a first roll condition detector (64A), a second roll condition detector (64B), a third roll condition detector (64C), and a controller (26) that uses the roll condition generated by the roll condition detectors (64A-C) to determine a wheel lift condition. Other roll condition detectors may also be used in the wheel lift determination. The wheel lift conditions may be active or passive or both.
    Type: Grant
    Filed: January 27, 2008
    Date of Patent: October 13, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianbo Lu, Michael Edward Brewer, Todd Allen Brown, Joseph Carr Meyers
  • Publication number: 20090254244
    Abstract: A system and method for detecting a fault in a pitch rate sensor onboard a vehicle. Signals, including a steering wheel angle, a yaw rate, a roll rate, a longitudinal acceleration, a lateral acceleration, and a vehicle speed, are processed in a controller to validate a pitch rate signal. Upon detection of a fault in the pitch rate signal, the system and method will determine a process in which to minimize negative effects of the pitch sensor fault. The system and method will then direct the controller to select a process, such as a direct shutdown, a slow shutdown or replace a signal, in a relevant control system, based on the determination.
    Type: Application
    Filed: April 4, 2008
    Publication date: October 8, 2009
    Inventors: Li Xu, Hongtei Eric Tseng, Joseph Carr Meyers