Patents by Inventor Joseph Chanpong

Joseph Chanpong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140349873
    Abstract: Methods are described for the production and use of fluorescence resonance energy transfer (FRET)-based competitive displacement aptamer assay formats. The assay schemes involve FRET in which the analyte (target) is quencher (Q)-labeled and previously bound by a fluorophore (F)-labeled aptamer such that when unlabeled analyte is added to the system and excited by specific wavelengths of light, the fluorescence intensity of the system changes in proportion to the amount of unlabeled analyte added. Alternatively, the aptamer can be Q-labeled and previously bound to an F-labeled analyte so that when unlabeled analyte enters the system, the fluorescence intensity also changes in proportion to the amount of unlabeled analyte.
    Type: Application
    Filed: June 3, 2014
    Publication date: November 27, 2014
    Inventors: John Bruno, Joseph Chanpong
  • Publication number: 20140011200
    Abstract: Methods are described for the production and use of fluorescence resonance energy transfer (FRET)-based competitive displacement aptamer assay formats. The assay schemes involve FRET in which the analyte (target) is quencher (Q)-labeled and previously bound by a fluorophore (F)-labeled aptamer such that when unlabeled analyte is added to the system and excited by specific wavelengths of light, the fluorescence intensity of the system changes in proportion to the amount of unlabeled analyte added. Alternatively, the aptamer can be Q-labeled and previously bound to an F-labeled analyte so that when unlabeled analyte enters the system, the fluorescence intensity also changes in proportion to the amount of unlabeled analyte.
    Type: Application
    Filed: February 20, 2009
    Publication date: January 9, 2014
    Inventors: John G. Bruno, Joseph Chanpong
  • Publication number: 20120270221
    Abstract: The present invention describes methods for the production and selecting of single chain (single-stranded) fluorescence resonance energy transfer (“FRET”) DNA or RNA aptamers containing fluorophores (F) and quenchers (Q) at various loci within their structures, such that when its specific matching analyte is bound and the FRET-aptamers are excited by specific wavelengths of light, the fluorescence intensity of the system is modulated (increased or decreased) in proportion to the amount of analyte added. F and Q are covalently linked to nucleotide triphosphates (NTPs), which are incorporated by various nucleic acid polymerases such as Taq polymerase during the polymerase chain reaction (PCR) and then selected by affinity chromatographic, size-exclusion or molecular sieving, and fluorescence techniques. Further separation of related FRET-aptamers can be achieved by ion-pair reverse phase high performance liquid chromatography (HPLC) or other types of chromatography.
    Type: Application
    Filed: January 28, 2011
    Publication date: October 25, 2012
    Inventors: John G. Bruno, Joseph Chanpong
  • Publication number: 20120219961
    Abstract: The present invention describes methods for the production and use of single chain (single-stranded) fluorescence resonance energy transfer (“FRET”) DNA or RNA aptamers containing fluorophores (F) and quenchers (Q) at various loci within their structures, such that when its specific matching analyte is bound and the FRET-aptamers are excited by specific wavelengths of light, the fluorescence intensity of the system is modulated (increased or decreased) in proportion to the amount of analyte added. F and Q are covalently linked to nucleotide triphosphates (NTPs), which are incorporated by various nucleic acid polymerases such as Taq polymerase during the polymerase chain reaction (PCR) and then selected by affinity chromatographic, size-exclusion or molecular sieving, and fluorescence techniques. Further separation of related FRET-aptamers can be achieved by ion-pair reverse phase high performance liquid chromatography (HPLC) or other types of chromatography.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 30, 2012
    Inventors: John G. Bruno, Joseph Chanpong
  • Publication number: 20120094277
    Abstract: Methods are described for the production and use of fluorescence resonance energy transfer (FRET)-based competitive displacement aptamer assay formats. The assay schemes involve FRET in which the analyte (target) is quencher (Q)-labeled and previously bound by a fluorophore (F)-labeled aptamer such that when unlabeled analyte is added to the system and excited by specific wavelengths of light, the fluorescence intensity of the system changes in proportion to the amount of unlabeled analyte added. Alternatively, the aptamer can be Q-labeled and previously bound to an F-labeled analyte so that when unlabeled analyte enters the system, the fluorescence intensity also changes in proportion to the amount of unlabeled analyte.
    Type: Application
    Filed: December 7, 2011
    Publication date: April 19, 2012
    Inventors: John G. Bruno, Joseph Chanpong
  • Patent number: 7906280
    Abstract: The present invention describes methods for the production and use of single chain (single-stranded) fluorescence resonance energy transfer (“FRET”) DNA or RNA aptamers containing fluorophores (F) and quenchers (Q) at various loci within their structures, such that when its specific matching analyte is bound and the FRET-aptamers are excited by specific wavelengths of light, the fluorescence intensity of the system is modulated (increased or decreased) in proportion to the amount of analyte added. F and Q are covalently linked to nucleotide triphosphates (NTPs), which are incorporated by various nucleic acid polymerases such as Taq polymerase during the polymerase chain reaction (PCR) and then selected by affinity chromatographic, size-exclusion or molecular sieving, and fluorescence techniques. Further separation of related FRET-aptamers can be achieved by ion-pair reverse phase high performance liquid chromatography (HPLC) or other types of chromatography.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: March 15, 2011
    Inventors: John G. Bruno, Joseph Chanpong
  • Publication number: 20090186342
    Abstract: Methods are described for the production and use of fluorescence resonance energy transfer (FRET)-based competitive displacement aptamer assay formats. The assay schemes involve FRET in which the analyte (target) is quencher (Q)-labeled and previously bound by a fluorophore (F)-labeled aptamer such that when unlabeled analyte is added to the system and excited by specific wavelengths of light, the fluorescence intensity of the system changes in proportion to the amount of unlabeled analyte added. Alternatively, the aptamer can be Q-labeled and previously bound to an F-labeled analyte so that when unlabeled analyte enters the system, the fluorescence intensity also changes in proportion to the amount of unlabeled analyte.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 23, 2009
    Inventors: John G. Bruno, Joseph Chanpong
  • Publication number: 20060257914
    Abstract: The present invention describes methods for the production and use of single chain (single-stranded) fluorescence resonance energy transfer (“FRET”) DNA or RNA aptamers containing fluorophores (F) and quenchers (Q) at various loci within their structures, such that when its specific matching analyte is bound and the FRET-aptamers are excited by specific wavelengths of light, the fluorescence intensity of the system is modulated (increased or decreased) in proportion to the amount of analyte added. F and Q are covalently linked to nucleotide triphosphates (NTPs), which are incorporated by various nucleic acid polymerases such as Taq polymerase during the polymerase chain reaction (PCR) and then selected by affinity chromatographic, size-exclusion or molecular sieving, and fluorescence techniques. Further separation of related FRET-aptamers can be achieved by ion-pair reverse phase high performance liquid chromatography (HPLC) or other types of chromatography.
    Type: Application
    Filed: May 12, 2006
    Publication date: November 16, 2006
    Inventors: John Bruno, Joseph Chanpong
  • Publication number: 20060257915
    Abstract: Methods are described for the production and use of fluorescence resonance energy transfer (FRET)-based competitive displacement aptamer assay formats. The assay schemes involve FRET in which the analyte (target) is quencher (Q)-labeled and previously bound by a fluorophore (F)-labeled aptamer such that when unlabeled analyte is added to the system and excited by specific wavelengths of light, the fluorescence intensity of the system changes in proportion to the amount of unlabeled analyte added. Alternatively, the aptamer can be Q-labeled and previously bound to an F-labeled analyte so that when unlabeled analyte enters the system, the fluorescence intensity also changes in proportion to the amount of unlabeled analyte. The F or Q is covalently linked to nucleotide triphosphates (NTPs), which are incorporated into the aptamer by various nucleic acid polymerases, such as Taq during PCR, and then selected by affinity chromatography, size-exclusion, and fluorescence techniques.
    Type: Application
    Filed: May 12, 2006
    Publication date: November 16, 2006
    Inventors: John Bruno, Joseph Chanpong