Patents by Inventor Joseph D Brostmeyer

Joseph D Brostmeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11312501
    Abstract: An aero vehicle with a dual mode propulsion system that can operate in a first mode below a ramjet speed and a second mode at a ramjet speed. The first mode is operated using a compressor driven by an electric motor supplied with electrical power from a power pack. When the vehicle has reached a speed where the ramjet engine can operate, the power pack is dropped from the vehicle to decrease the weight of the vehicle.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 26, 2022
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Robert A Ress, Jr., Joseph D Brostmeyer
  • Patent number: 11286805
    Abstract: A geared turbofan engine with at least one compression stage and at least one turbine stage on a high speed shaft, the high speed shaft coupled through a speed reduction gear box to a low speed shaft with a fan and a starter/generator. The low speed shaft is collinear with the high speed shaft but does not rotate within the high speed shaft. The speed reduction gear box is positioned between and mechanically couples the high speed shaft and the low speed shaft, which allows the fan and the integrated starter/generator on the low speed shaft to operate at a lower speed than the high speed shaft.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: March 29, 2022
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Joseph D. Brostmeyer, Robert A. Ress, Jr., Tyler W. Sloss, Barry J. Brown
  • Publication number: 20210396148
    Abstract: A geared turbofan engine with at least one compression stage and at least one turbine stage on a high speed shaft, the high speed shaft coupled through a speed reduction gear box to a low speed shaft with a fan and a starter/generator. The low speed shaft is collinear with the high speed shaft but does not rotate within the high speed shaft. The speed reduction gear box is positioned between and mechanically couples the high speed shaft and the low speed shaft, which allows the fan and the integrated starter/generator on the low speed shaft to operate at a lower speed than the high speed shaft.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 23, 2021
    Inventors: Joseph D. BROSTMEYER, Robert A. RESS, JR., Tyler W. SLOSS, Barry J. BROWN
  • Patent number: 11187622
    Abstract: An apparatus, system, and process for testing a gas turbine engine or other test object under a cold condition, such as a compressor of a gas turbine engine, a combustor of a gas turbine engine, or an afterburner of an aero gas turbine engine, using compressed air stored in an underground storage reservoir of a CAES system along with an air turbine or an air injector. High-pressure, but low-volume, compressed air from a CAES system can be converted into a low-pressure, but high-volume, flow of compressed air using an air injector to supply enough compressed air to test a combustor or an afterburner. High pressure compressed air from the CAES system can be used to drive an air turbine that then drives a compressor for testing.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: November 30, 2021
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Joseph D. Brostmeyer, Scott A. Baker
  • Patent number: 11041436
    Abstract: A process for retrofitting an industrial gas turbine engine of a power plant where an old industrial engine with a high spool has a new low spool with a low pressure turbine that drives a low pressure compressor using exhaust gas from the high pressure turbine, and where the new low pressure compressor delivers compressed air through a new compressed air line to the high pressure compressor through a new inlet added to the high pressure compressor. The old electric generator is replaced with a new generator having around twice the electrical power production. One or more stages of vanes and blades are removed from the high pressure compressor to optimally match a pressure ratio split. Closed loop cooling of one or more new stages of vanes and blades in the high pressure turbine is added and the spent cooling air is discharged into the combustor.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: June 22, 2021
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Russell B. Jones, Joseph D. Brostmeyer, Justin T. Cejka, John E. Ryznic
  • Publication number: 20210140850
    Abstract: An apparatus, system, and process for testing a gas turbine engine or other test object under a cold condition, such as a compressor of a gas turbine engine, a combustor of a gas turbine engine, or an afterburner of an aero gas turbine engine, using compressed air stored in an underground storage reservoir of a CAES system along with an air turbine or an air injector. High-pressure, but low-volume, compressed air from a CAES system can be converted into a low-pressure, but high-volume, flow of compressed air using an air injector to supply enough compressed air to test a combustor or an afterburner. High pressure compressed air from the CAES system can be used to drive an air turbine that then drives a compressor for testing.
    Type: Application
    Filed: September 18, 2017
    Publication date: May 13, 2021
    Inventors: Joseph D. BROSTMEYER, Scott A. BAKER
  • Patent number: 10739233
    Abstract: A system and method for testing a combustor or other component of a large industrial gas turbine engine. A test facility for testing a gas turbine engine component includes a storage reservoir, a heat exchanger (13) with a first fluid flow passage connected to the storage reservoir and a second fluid flow passage, a combustor (18) connected to the second fluid flow passage of the heat exchanger (13), a hot gas stream from the combustor flowing within the second fluid flow passage, and a test component of a gas turbine engine connected to the second fluid flow passage of the heat exchanger (13). The compressed air from the storage reservoir (11) passes through the heat exchanger (13) first fluid flow passage and is preheated from the hot gas stream passing through the second fluid flow passage, and the preheated compressed air from the heat exchanger (13) passes into the test component for testing.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: August 11, 2020
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Joseph D. Brostmeyer, Russell B. Jones, James P. Downs
  • Patent number: 10641177
    Abstract: A process for retrofitting an electric power plant that uses two 60 Hertz large frame heavy duty industrial gas turbine engines to drive electric generators and produce electricity, where each of the two industrial engines can produce up to 350 MW of output power. The process replaces the two 350 MW industrial engines with one twin spool industrial gas turbine engine that is capable of producing at least 700 MW of output power. Thus, two prior art industrial engines can be replaced with one industrial engine that can produce power equal to the two prior art industrial engines.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: May 5, 2020
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Joseph D. Brostmeyer, Russell B. Jones, Justin T. Cejka, John A. Orosa, John E. Ryznic
  • Publication number: 20190178160
    Abstract: A process for retrofitting an industrial gas turbine engine of a power plant where an old industrial engine with a high spool has a new low spool with a low pressure turbine that drives a low pressure compressor using exhaust gas from the high pressure turbine, and where the new low pressure compressor delivers compressed air through a new compressed air line to the high pressure compressor through a new inlet added to the high pressure compressor. The old electric generator is replaced with a new generator having around twice the electrical power production. One or more stages of vanes and blades are removed from the high pressure compressor to optimally match a pressure ratio split. Closed loop cooling of one or more new stages of vanes and blades in the high pressure turbine is added and the spent cooling air is discharged into the combustor.
    Type: Application
    Filed: May 15, 2017
    Publication date: June 13, 2019
    Inventors: Russell B. JONES, Joseph D. BROSTMEYER, Justin T. CEJKA, John E. RYZNIC
  • Publication number: 20190145314
    Abstract: An industrial gas turbine engine with a high spool and a low spool in which low pressure compressed air is supplied to the high pressure compressor, and where a portion of the low pressure compressed air is bled off for use as cooling air for hot parts in the high pressure turbine of the engine. Annular bleed off channels are located in the LPC diffuser. The bleed channels bleed off around 15% of the core flow and pass the bleed off air into a cooling flow channel that then flows into the cooling circuits in the turbine hot parts.
    Type: Application
    Filed: April 24, 2017
    Publication date: May 16, 2019
    Inventors: John A OROSA, Joseph D BROSTMEYER, Russell B JONES, Justin T CEJKA
  • Publication number: 20190041293
    Abstract: A system and method for testing a combustor or other component of a large industrial gas turbine engine. A test facility for testing a gas turbine engine component includes a storage reservoir, a heat exchanger (13) with a first fluid flow passage connected to the storage reservoir and a second fluid flow passage, a combustor (18) connected to the second fluid flow passage of the heat exchanger (13), a hot gas stream from the combustor flowing within the second fluid flow passage, and a test component of a gas turbine engine connected to the second fluid flow passage of the heat exchanger (13). The compressed air from the storage reservoir (11) passes through the heat exchanger (13) first fluid flow passage and is preheated from the hot gas stream passing through the second fluid flow passage, and the preheated compressed air from the heat exchanger (13) passes into the test component for testing.
    Type: Application
    Filed: September 26, 2016
    Publication date: February 7, 2019
    Applicant: Florida Turbine Technologies, Inc.
    Inventors: Joseph D. BROSTMEYER, Russell B. JONES, James P. DOWNS
  • Publication number: 20180371924
    Abstract: An integrally bladed rotor in which a hub and a web are formed from a fine grain microstructure using an investment casting process or from metal powder with a HIP process, and a plurality of rotor blades formed from a coarse grain microstructure using a metal additive manufacturing process, where the hub and the web and the rotor blades are formed as a single piece and from the same material.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 27, 2018
    Inventors: David B Allen, Joseph D Brostmeyer
  • Patent number: 10151211
    Abstract: An apparatus and a process for converting a twin spool aero gas turbine engine to an industrial gas turbine engine, where the fan of the aero engine is removed and replaced with an electric generator, a power turbine is added that drives a low pressure compressor that is removed from the aero engine, variable guide vanes are positioned between the high pressure turbine and the power turbine, and a low pressure compressed air line is connected between the outlet of the low pressure compressor and an inlet to the high pressure compressor, where a hot gas flow produced in the combustor first flows through the high pressure turbine, then through the low pressure turbine, and then through the power turbine.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: December 11, 2018
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Joseph D Brostmeyer, Russell B Jones
  • Publication number: 20180245512
    Abstract: An industrial gas turbine engine with a high spool and a low spool in which low pressure compressed air is supplied to the high pressure compressor, and where a portion of the low pressure compressed air is bled off for use as cooling air for hot parts in the high pressure turbine of the engine. Annular bleed off channels are located in the LPC diffuser. The bleed channels bleed off around 15% of the core flow and pass the bleed off air into a cooling flow channel that then flows into the cooling circuits in the turbine hot parts.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 30, 2018
    Inventors: Joseph D. Brostmeyer, Russell B. Jones, John A. Orosa
  • Publication number: 20180066586
    Abstract: A process for retrofitting an electric power plant that uses two 60 Hertz large frame heavy duty industrial gas turbine engines to drive electric generators and produce electricity, where each of the two industrial engines can produce up to 350 MW of output power. The process replaces the two 350 MW industrial engines with one twin spool industrial gas turbine engine that is capable of producing at least 700 MW of output power. Thus, two prior art industrial engines can be replaced with one industrial engine that can produce power equal to the two prior art industrial engines.
    Type: Application
    Filed: March 23, 2016
    Publication date: March 8, 2018
    Inventors: Joseph D. BROSTMEYER, Russell B. JONES, Justin T. CEJKA, John A. OROSA, John E. Ryznic
  • Publication number: 20180010476
    Abstract: An apparatus and a process for converting a twin spool aero gas turbine engine to an industrial gas turbine engine, where the fan of the aero engine is removed and replaced with an electric generator, a power turbine is added that drives a low pressure compressor that is removed from the aero engine, variable guide vanes are positioned between the high pressure turbine and the power turbine, and a low pressure compressed air line is connected between the outlet of the low pressure compressor and an inlet to the high pressure compressor, where a hot gas flow produced in the combustor first flows through the high pressure turbine, then through the low pressure turbine, and then through the power turbine.
    Type: Application
    Filed: September 15, 2015
    Publication date: January 11, 2018
    Inventors: Joseph D. Brostmeyer, Russell B. Jones
  • Publication number: 20170342854
    Abstract: A large frame heavy duty industrial gas turbine engine that can produce twice the power as a conventional single spool industrial engine, and can operate at full power during a hot day. The industrial engine includes a high spool that directly drives an electric generator at a synchronous speed of the electric power grid, a low spool with a low pressure turbine that drives a low pressure compressor from the exhaust gas from the high pressure turbine, where the low pressure compressor supplies compressed air to the high pressure compressor. Variable inlet guide vane assemblies are used in the low pressure turbine and the low pressure compressor so that the high spool can operate at full power even during a hot day. The low spool is designed to operate at a higher speed than at the normal temperature conditions so that a high mass flow can be produced for the high spool during the hot day conditions.
    Type: Application
    Filed: April 25, 2016
    Publication date: November 30, 2017
    Inventors: Barry J. Brown, Joseph D. Brostmeyer, Justin T. Cejka, Russell B. Jones
  • Patent number: 9810151
    Abstract: A turbine of a gas turbine engine with a rotor and a stator forming a rim cavity, where the rotor includes a turbine rotor blade with a cooling air channel opening into the rim cavity, and a centrifugal impeller rotatably connected to the rotor in which the centrifugal impeller discharges pressurized cooling air into the rim cavity to improve the rim cavity seal and to supply pressurized cooling air to the rotor blade cooling air channel.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: November 7, 2017
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Joseph D Brostmeyer
  • Publication number: 20170298826
    Abstract: A process for retrofitting an electric power plant that uses two 60 Hertz large frame heavy duty industrial gas turbine engines to drive electric generators and produce electricity, where each of the two industrial engines can produce up to 350 MW of output power. The process replaces the two 350 MW industrial engines with one twin spool industrial gas turbine engine that is capable of producing at least 700 MW of output power. Thus, two prior art industrial engines can be replaced with one industrial engine that can produce power equal to the two prior art industrial engines.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 19, 2017
    Inventors: John E. Ryznic, Russell B. Jones, Joseph D. Brostmeyer, Justin T. Cejka
  • Publication number: 20170241336
    Abstract: A process for retrofitting an industrial gas turbine engine of a power plant where an old industrial engine with a high spool has a new low spool with a low pressure turbine that drives a low pressure compressor using exhaust gas from the high pressure turbine, and where the new low pressure compressor delivers compressed air through a new compressed air line to the high pressure compressor through a new inlet added to the high pressure compressor. The old electric generator is replaced with a new generator having around twice the electrical power production. One or more stages of vanes and blades are removed from the high pressure compressor to optimally match a pressure ratio split. Closed loop cooling of one or more new stages of vanes and blades in the high pressure turbine is added and the spent cooling air is discharged into the combustor.
    Type: Application
    Filed: May 17, 2016
    Publication date: August 24, 2017
    Inventors: Russell B. Jones, Joseph D. Brostmeyer, Justin T. Cejka, John E. Ryznic