Patents by Inventor Joseph D. Walker

Joseph D. Walker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068135
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Kyle L. Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 11913143
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 27, 2024
    Assignee: Apple Inc.
    Inventors: Kyle L Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 11719127
    Abstract: A bearing compartment of a gas turbine engine includes a rotationally fixed structure defined about an engine longitudinal axis; a gutter section formed in the front support; an oil drainback assembly mountable to the gutter section to direct oil into a drain passage to communicate oil from the gutter.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: August 8, 2023
    Assignee: Raytheon Technologies Corporation
    Inventors: Todd A. Davis, Joseph D. Walker
  • Patent number: 11286854
    Abstract: A gas turbine engine includes a rotating shaft. An oil scoop rotates with the rotating shaft. The oil scoop has end walls spaced axially along an axis of rotation of the rotating shaft and an axially central recess. A duct is spaced radially outwardly of the oil scoop. The duct has an oil inlet, with an oil supply nozzle to supply oil into the oil inlet in the duct. The oil inlet is then connected to supply oil into the recess. The oil scoop has an inner hole to allow oil to flow from the recess to an outer periphery of the shaft.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: March 29, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: James B. Coffin, Joseph D. Walker, Todd A. Davis
  • Publication number: 20210123361
    Abstract: A bearing compartment of a gas turbine engine includes a rotationally fixed structure defined about an engine longitudinal axis; a gutter section formed in the front support; an oil drainback assembly mountable to the gutter section to direct oil into a drain passage to communicate oil from the gutter.
    Type: Application
    Filed: October 23, 2019
    Publication date: April 29, 2021
    Applicant: United Technologies Corporation
    Inventors: Todd A. Davis, Joseph D. Walker
  • Publication number: 20210040888
    Abstract: A gas turbine engine includes a rotating shaft. An oil scoop rotates with the rotating shaft. The oil scoop has end walls spaced axially along an axis of rotation of the rotating shaft and an axially central recess. A duct is spaced radially outwardly of the oil scoop. The duct has an oil inlet, with an oil supply nozzle to supply oil into the oil inlet in the duct. The oil inlet is then connected to supply oil into the recess.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 11, 2021
    Inventors: James B. Coffin, Joseph D. Walker, Todd A. Davis
  • Patent number: 10662811
    Abstract: A fluid damping structure is provided that includes a damper ring. The damper ring includes an annular body a plurality of fluid check valves, and at least one fluid stop. The annular body extends circumferentially around an axial centerline, and is defined by a first end surface, a second end surface, an outer radial surface, and an inner radial surface. The outer radial surface and the inner radial surface extend axially from the first end surface toward the second end surface. The body includes one or more check valve passages. Each check valve passage extends axially from an open end disposed at the first end surface inwardly toward the second end surface, and is disposed between the inner radial surface and the outer radial surface. An inlet aperture extends between each check valve passage and the outer radial surface, and an outlet aperture extends between each check valve passage and the inner radial surface. Each fluid check valve is disposed in a check valve passage.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: May 26, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Todd A. Davis, Denman H. James, Daniel L. Gysling, Joseph D. Walker
  • Patent number: 10662812
    Abstract: A lubricant scoop is disclosed. The lubricant scoop includes an annular body configured for engagement with a shaft rotating about a central axis. The annular body includes a first annular portion and a second annular portion disposed adjacent the first annular portion. The first annular portion includes a radially oriented entrance surface and a first axially oriented transition surface. The second annular portion includes a second axially oriented transition surface, a primary redirection member spaced radially outward from the second axially oriented transition surface, a radially oriented exit surface and an exit conduit having an opening positioned on the radially oriented exit surface.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: May 26, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Joseph D. Walker, James B. Coffin
  • Publication number: 20190120085
    Abstract: A lubricant scoop is disclosed. The lubricant scoop includes an annular body configured for engagement with a shaft rotating about a central axis. The annular body includes a first annular portion and a second annular portion disposed adjacent the first annular portion. The first annular portion includes a radially oriented entrance surface and a first axially oriented transition surface. The second annular portion includes a second axially oriented transition surface, a primary redirection member spaced radially outward from the second axially oriented transition surface, a radially oriented exit surface and an exit conduit having an opening positioned on the radially oriented exit surface.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 25, 2019
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: JOSEPH D. WALKER, JAMES B. COFFIN
  • Patent number: 10174629
    Abstract: A sealing assembly for a bearing compartment of a gas turbine engine includes a shaft and a seal plate mounted to the shaft. The shaft is configured to rotate about a longitudinal axis of the gas turbine engine. The seal plate includes an annular body, scoop, sealing surface, plurality of teeth, and channel. The scoop is connected to and extends radially from the annular body. The scoop defines a lip and an annulus surrounding the shaft and is disposed on a first axial end of the annular body. The sealing surface is disposed on a second axial end of the annular body opposite from the scoop. The plurality of teeth are disposed into and along an outer perimeter of a portion of the annular body. The channel extends through a portion of the annular body and is fluidly connected to the scoop and to the sealing surface.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: January 8, 2019
    Assignee: United Technologies Corporation
    Inventors: Christopher M. Valva, Todd A. Davis, Joseph D. Walker
  • Publication number: 20180328225
    Abstract: A fluid damping structure is provided that includes a damper ring. The damper ring includes an annular body a plurality of fluid check valves, and at least one fluid stop. The annular body extends circumferentially around an axial centerline, and is defined by a first end surface, a second end surface, an outer radial surface, and an inner radial surface. The outer radial surface and the inner radial surface extend axially from the first end surface toward the second end surface. The body includes one or more check valve passages. Each check valve passage extends axially from an open end disposed at the first end surface inwardly toward the second end surface, and is disposed between the inner radial surface and the outer radial surface. An inlet aperture extends between each check valve passage and the outer radial surface, and an outlet aperture extends between each check valve passage and the inner radial surface. Each fluid check valve is disposed in a check valve passage.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 15, 2018
    Inventors: Todd A. Davis, Denman H. James, Daniel L. Gysling, Joseph D. Walker