Patents by Inventor Joseph Dekar
Joseph Dekar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11261770Abstract: A vehicle engine system includes an internal combustion engine, an air induction system configured to supply intake air to the internal combustion engine, and an evaporative emissions control (EVAP) system is configured to selectively supply purge fuel vapor to the EHC for subsequent combustion and rapid heating to a predetermined catalyst light-off temperature. The system additionally includes a booster configured to charge the intake air, and an engine bypass conduit fluidly coupled between the booster and the exhaust aftertreatment system. When the internal combustion engine is off, the booster selectively supplies a flow of intake air through the engine bypass conduit to the exhaust aftertreatment system. The flow of intake air draws purge fuel vapor from the EVAP system into the exhaust aftertreatment system.Type: GrantFiled: February 22, 2021Date of Patent: March 1, 2022Assignee: FCA US LLCInventors: Matthew M Delleree, James Daley, Roger C Sager, Joseph Dekar, Nithin Baradwaj
-
Patent number: 10247116Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor to an engine of the vehicle via a vapor line and a purge valve. The system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. A controller is configured to: detect an imminent cold start of the engine and, in response to the detecting, perform the cold start of the engine by controlling at least one of the purge pump and the purge valve, based on the measured amount of HC, to deliver a desired amount of fuel vapor to the engine, which decreases HC emissions by the engine.Type: GrantFiled: May 25, 2016Date of Patent: April 2, 2019Assignee: FCA US LLCInventors: Joseph Dekar, Roger C Sager, James J Daley, William B Blomquist, Jeffrey P Wuttke, Russell J Wakeman, Adam Fleischman, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Edward Baker, Michael T Vincent, Wei-Jun Yang, Aikaterini Tsahalou
-
Patent number: 10161323Abstract: A vapor canister of an evaporative emissions (EVAP) system is configured to store fuel vapor evaporated from a liquid fuel housed in a fuel tank of a vehicle. A boost line is connected between a high-pressure side of a boost system of an engine and the vapor canister, a boost pressure control valve is disposed in-line along the boost line and configured to control an amount of boost pressure provided to the vapor canister, and a set of purge lines are connected between the vapor canister and at least one of the engine, an induction system of the engine, and an exhaust treatment system of the engine. A controller is configured to control the boost pressure control valve to control the boost pressure provided to the vapor canister to control an amount of fuel vapor forced from the vapor canister through at least one of the set of purge lines.Type: GrantFiled: November 23, 2016Date of Patent: December 25, 2018Assignee: FCA US LLCInventors: Roger C Sager, Ryan Sturgeon, James Daley, Joseph Dekar, Jospeh B Unsworth, Luis Del Rio, Ronald A Yannone, Jr., Jeffrey P Wuttke
-
Patent number: 10161322Abstract: An evaporative emissions (EVAP) system for a vehicle includes a waste heat control valve configured to direct an exhaust gas from an exhaust treatment system, the waste heat control valve being positioned at a point downstream from a catalyst of the exhaust treatment system, a vapor canister configured to store a fuel vapor evaporated from a liquid fuel housed in a fuel tank of the vehicle, and a heat exchanger connected to (i) the fuel tank, (ii) the waste heat control valve, and (iii) the vapor canister, the heat exchanger being configured to (a) utilize the exhaust waste heat to evaporate the fuel vapor from the liquid fuel and (b) provide the evaporated fuel vapor to the vapor canister. A method of operating the EVAP system includes controlling the waste heat control valve and a fuel pump to provide the vapor canister with a desired amount of fuel vapor.Type: GrantFiled: November 23, 2016Date of Patent: December 25, 2018Assignee: FCA US LLCInventors: Roger C Sager, James Daley, Joseph Dekar, Brian L Terwedo, Derek R Robson, Daniel E Hornback
-
Publication number: 20180142634Abstract: An evaporative emissions (EVAP) system for a vehicle includes a waste heat control valve configured to direct an exhaust gas from an exhaust treatment system, the waste heat control valve being positioned at a point downstream from a catalyst of the exhaust treatment system, a vapor canister configured to store a fuel vapor evaporated from a liquid fuel housed in a fuel tank of the vehicle, and a heat exchanger connected to (i) the fuel tank, (ii) the waste heat control valve, and (iii) the vapor canister, the heat exchanger being configured to (a) utilize the exhaust waste heat to evaporate the fuel vapor from the liquid fuel and (b) provide the evaporated fuel vapor to the vapor canister. A method of operating the EVAP system includes controlling the waste heat control valve and a fuel pump to provide the vapor canister with a desired amount of fuel vapor.Type: ApplicationFiled: November 23, 2016Publication date: May 24, 2018Inventors: Roger C. Sager, James Daley, Joseph Dekar, Brian L. Terwedo, Derek R. Robson, Daniel E. Hornback
-
Publication number: 20180142631Abstract: A vapor canister of an evaporative emissions (EVAP) system is configured to store fuel vapor evaporated from a liquid fuel housed in a fuel tank of a vehicle. A boost line is connected between a high-pressure side of a boost system of an engine and the vapor canister, a boost pressure control valve is disposed in-line along the boost line and configured to control an amount of boost pressure provided to the vapor canister, and a set of purge lines are connected between the vapor canister and at least one of the engine, an induction system of the engine, and an exhaust treatment system of the engine. A controller is configured to control the boost pressure control valve to control the boost pressure provided to the vapor canister to control an amount of fuel vapor forced from the vapor canister through at least one of the set of purge lines.Type: ApplicationFiled: November 23, 2016Publication date: May 24, 2018Inventors: Roger C. Sager, Ryan Sturgeon, James Daley, Joseph Dekar, Jospeh B. Unsworth, Luis Del Rio, Ronald A Yannone, JR., Jeffrey P Wuttke
-
Patent number: 9970391Abstract: A diagnostic method and system includes a control valve configured to control an amount of air drawn into an evaporative emissions (EVAP) system through an air filter and a vapor canister, and a pressure sensor configured to measure pressure in the EVAP system. The system also includes a controller configured to detect an engine idle-to-off transition and, in response to detecting the engine idle-to-off transition: receive a first pressure from the pressure sensor, fully open a purge valve connected between the vapor canister and an intake port of an engine, fully close the control valve, monitor one or more second pressures received from the pressure sensor, and detect a malfunction of the EVAP system based on the first pressure, at least one of the one or more second pressures, and a diagnostic threshold.Type: GrantFiled: May 25, 2016Date of Patent: May 15, 2018Assignee: FCA US LLCInventors: Roger C Sager, William B Blomquist, James Daley, Aikaterini Tsahalou, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Joseph Dekar
-
Patent number: 9879623Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor trapped in a vapor canister to an engine of the vehicle via a vapor line when engine vacuum is less than an appropriate level for delivering fuel vapor to the engine, the fuel vapor resulting from evaporation of a liquid fuel stored in a fuel tank of the engine. The EVAP control system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. The EVAP control system also includes a controller configured to, based on the measured amount of MC, control at least one of the purge pump and a purge valve to deliver a desired amount of fuel vapor to the engine.Type: GrantFiled: May 25, 2016Date of Patent: January 30, 2018Assignee: FCA US LLCInventors: Joseph Dekar, Roger C Sager, James J Daley, William B Blomquist, Jeffrey P Wuttke, Russell J Wakeman, Adam Fleischman, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Edward Baker, Michael T Vincent, Wei-Jun Yang, Aikaterini Tsahalou
-
Publication number: 20170342917Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor to an engine of the vehicle via a vapor line and a purge valve. The system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. A controller is configured to: detect an imminent cold start of the engine and, in response to the detecting, perform the cold start of the engine by controlling at least one of the purge pump and the purge valve, based on the measured amount of HC, to deliver a desired amount of fuel vapor to the engine, which decreases HC emissions by the engine.Type: ApplicationFiled: May 25, 2016Publication date: November 30, 2017Inventors: Joseph Dekar, Roger C Sager, James J Daley, William B Blomquist, Jeffrey P Wuttke, Russell J Wakeman, Adam Fleischman, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Edward Baker, Michael T Vincent, Wei-Jun Yang, Aikaterini Tsahalou
-
Publication number: 20170342919Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor trapped in a vapor canister to an engine of the vehicle via a vapor line when engine vacuum is less than an appropriate level for delivering fuel vapor to the engine, the fuel vapor resulting from evaporation of a liquid fuel stored in a fuel tank of the engine. The EVAP control system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. The EVAP control system also includes a controller configured to, based on the measured amount of HC, control at least one of the purge pump and a purge valve to deliver a desired amount of fuel vapor to the engine.Type: ApplicationFiled: May 25, 2016Publication date: November 30, 2017Inventors: Joseph Dekar, Roger C. Sager, James J. Daley, William B. Blomquist, Jeffrey P. Wuttke, Russell J. Wakeman, Adam Fleischman, Ronald A. Yannone, JR., Luis Del Rio, Mark L. Lott, Edward Baker, Michael T. Vincent, Wei-Jun Yang, Aikaterini Tsahalou
-
Publication number: 20170342946Abstract: A diagnostic method and system includes a control valve configured to control an amount of air drawn into an evaporative emissions (EVAP) system through an air filter and a vapor canister, and a pressure sensor configured to measure pressure in the EVAP system. The system also includes a controller configured to detect an engine idle-to-off transition and, in response to detecting the engine idle-to-off transition: receive a first pressure from the pressure sensor, fully open a purge valve connected between the vapor canister and an intake port of an engine, fully close the control valve, monitor one or more second pressures received from the pressure sensor, and detect a malfunction of the EVAP system based on the first pressure, at least one of the one or more second pressures, and a diagnostic threshold.Type: ApplicationFiled: May 25, 2016Publication date: November 30, 2017Inventors: Roger C. Sager, William B. Blomquist, James Daley, Aikaterini Tsahalou, Ronald A. Yannone, JR., Luis Del Rio, Mark L. Lott, Joseph Dekar