Patents by Inventor Joseph E. Cosgrove

Joseph E. Cosgrove has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240341702
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Application
    Filed: April 15, 2024
    Publication date: October 17, 2024
    Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WÓJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
  • Patent number: 12083495
    Abstract: High purity carbon sorbent monoliths that are particularly effective for the adsorption and subsequent desorption of trace-contaminants, such as ammonia, are produced by 3D-printing polymer monoliths, carbonizing them, and subsequently activating them to produce an effective amount of at least one type of oxygen species on exposed carbon surfaces. The high purity carbon sorbent monoliths are vacuum-regenerable on a time scale of a few minutes.
    Type: Grant
    Filed: July 3, 2020
    Date of Patent: September 10, 2024
    Assignee: Advanced Fuel Research, Inc
    Inventors: Joseph E. Cosgrove, Marek A. Wójtowicz, Michael A. Serio, Andrew E. Carlson
  • Patent number: 11969273
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: April 30, 2024
    Assignee: IMAGE INSIGHT, INC.
    Inventors: Eric P. Rubenstein, Peter R. Solomon, Gordon A. Drukier, Marek A. Wojtowicz, Joseph E. Cosgrove, Michael A. Serio, James R. Markham, Kenneth W. Wang, William M. Pramenko
  • Publication number: 20230218244
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Application
    Filed: December 29, 2022
    Publication date: July 13, 2023
    Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WOJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
  • Patent number: 11540787
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: January 3, 2023
    Assignee: IMAGE INSIGHT, INC.
    Inventors: Eric P. Rubenstein, Peter R. Solomon, Gordon A. Drukier, Marek A. Wojtowicz, Joseph E. Cosgrove, Michael A. Serio, James R. Markham, Kenneth W. Wang, William M. Pramenko
  • Publication number: 20210128083
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Application
    Filed: July 13, 2020
    Publication date: May 6, 2021
    Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WOJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
  • Publication number: 20210001305
    Abstract: High purity carbon sorbent monoliths that are particularly effective for the adsorption and subsequent desorption of trace-contaminants, such as ammonia, are produced by 3D-printing polymer monoliths, carbonizing them, and subsequently activating them to produce an effective amount of at least one type of oxygen species on exposed carbon surfaces. The high purity carbon sorbent monoliths are vacuum-regenerable on a time scale of a few minutes.
    Type: Application
    Filed: July 3, 2020
    Publication date: January 7, 2021
    Applicant: ADVANCED FUEL RESEARCH, INC.
    Inventors: Joseph E. Cosgrove, Marek A. Wójtowicz, Michael A. Serio, Andrew E. Carlson
  • Patent number: 10751008
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: August 25, 2020
    Assignee: IMAGE INSIGHT, INC.
    Inventors: Eric P. Rubenstein, Peter R. Solomon, Gordon A. Drukier, Marek A. Wojtowicz, Joseph E. Cosgrove, Michael A. Serio, James R. Markham, Kenneth W. Wang, William M. Pramenko
  • Publication number: 20190328342
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Application
    Filed: May 6, 2019
    Publication date: October 31, 2019
    Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WOJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
  • Patent number: 10278656
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: May 7, 2019
    Assignee: IMAGE INSIGHT, INC.
    Inventors: Eric P. Rubenstein, Peter R. Solomon, Gordon A. Drukier, Marek A. Wojtowicz, Joseph E. Cosgrove, Michael A. Serio, James R. Markham, Kenneth W. Wang, William M. Pramenko
  • Publication number: 20170319155
    Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.
    Type: Application
    Filed: May 9, 2017
    Publication date: November 9, 2017
    Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WOJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
  • Patent number: 9073039
    Abstract: A sorbent that is particularly effective for the efficient adsorption and subsequent desorption of ammonia is produced from a high-purity carbon material which is exposed to an oxidizing environment so as to produce an effective amount of at least one oxygen species on its exposed surfaces. The high purity carbon material may be produced by carbonizing a polymer material, and the sorbent may comprise a support having an open-cell, three dimensional, lattice-like structure.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: July 7, 2015
    Assignee: ADAVANCED FUEL RESEARCH, INC.
    Inventors: Marek A. Wójtowicz, Joseph E. Cosgrove, Michael A. Serio
  • Publication number: 20140013942
    Abstract: A sorbent that is particularly effective for the efficient adsorption and subsequent desorption of ammonia is produced from a high-purity carbon material which is exposed to an oxidizing environment so as to produce an effective amount of at least one oxygen species on its exposed surfaces. The high purity carbon material may be produced by carbonizing a polymer material, and the sorbent may comprise a support having an open-cell, three dimensional, lattice-like structure.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 16, 2014
    Applicant: Advanced Fuel Research, Inc.
    Inventors: Marek A. Wójtowicz, Joseph E. Cosgrove, Michael A. Serio
  • Patent number: 8615812
    Abstract: High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 31, 2013
    Assignee: Advanced Fuel Research, Inc.
    Inventors: Marek A. Wójtowicz, Eric P. Rubenstein, Michael A. Serio, Joseph E. Cosgrove
  • Publication number: 20130015181
    Abstract: A method and apparatus that enable high efficiency microwave heating, for pyrolysis of low loss materials (i.e. poor absorbers of microwave energy). A unique microwave susceptor geometry is employed to enhance the heating of the low loss material. The geometry is such that the microwave radiation is caused to impinge upon the susceptor body, with the low loss material being effectively interposed between the microwave source and the susceptor body.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 17, 2013
    Inventors: Joseph E. Cosgrove, Marek A. Wójtowicz, Michael A. Serio
  • Publication number: 20110167530
    Abstract: High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.
    Type: Application
    Filed: March 31, 2010
    Publication date: July 14, 2011
    Inventors: Marek A. Wojtowicz, Eric P. Rubenstein, Michael A. Serio, Joseph E. Cosgrove
  • Patent number: 7155363
    Abstract: The method measures the temperature, emissivity, and other properties of relatively smooth surfaces radiating thermal energy, and is especially adapted for monitoring semiconductor fabrication processes. Temperature is determined by relating measured radiance to the predictions of the Planck radiation law, using knowledge of the emissivity determined from an analysis of the polarization of the thermally emitted radiance. Additional information regarding the properties of thin films, such as thickness and composition, can be computed from the emissivity or the ratio of the emissivities measured at two independent polarizations. Because the data are obtained from the intrinsic thermal radiance, rather than from an extrinsic light source, the measurement can be performed when it is inconvenient or impossible to provide a light source for reflectance measurements.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: December 26, 2006
    Assignee: MKS Instruments, Inc.
    Inventors: Peter A. Rosenthal, Jiazhan Xu, Sylvie Charpenay, Joseph E. Cosgrove