Patents by Inventor Joseph E. Sluz

Joseph E. Sluz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10873394
    Abstract: A free-space optical (FSO) retransmission device includes a memory bank partitioned into at least a source buffer indexed by segment identifications (IDs), an interface in communication with an optical terminal and an Ethernet network, and a programmable circuit configured to execute data process operations. The data process operations include receiving data from the Ethernet network, generating an FSO segment including the data received from the Ethernet network and a segment ID, generating and transmitting an outgoing FSO frame to the optical terminal, the outgoing FSO frame including an outgoing FSO segment, and storing the outgoing FSO segment in the source buffer until a corresponding acknowledgement is received in an inbound FSO frame from the optical terminal.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: December 22, 2020
    Assignee: The Johns Hopkins University
    Inventors: James L. Riggins, II, David D. Nicholes, Joseph E. Sluz, Juan C. Juarez
  • Publication number: 20200099446
    Abstract: A free-space optical (FSO) retransmission device includes a memory bank partitioned into at least a source buffer indexed by segment identifications (IDs), an interface in communication with an optical terminal and an Ethernet network, and a programmable circuit configured to execute data process operations. The data process operations include receiving data from the Ethernet network, generating an FSO segment including the data received from the Ethernet network and a segment ID, generating and transmitting an outgoing FSO frame to the optical terminal, the outgoing FSO frame including an outgoing FSO segment, and storing the outgoing FSO segment in the source buffer until a corresponding acknowledgement is received in an inbound FSO frame from the optical terminal.
    Type: Application
    Filed: September 4, 2019
    Publication date: March 26, 2020
    Inventors: James L. Riggins, II, David D. Nicholes, Joseph E. Sluz, Juan C. Juarez
  • Patent number: 10439733
    Abstract: An optical circuit breaker includes a main optical transmission path including an optical coupler, a delay line and a protection device, and a parallel protection path configured to receive a tapped portion of a signal provided to the main optical transmission path and generate a reference signal based on the tapped portion. The protection device may be configured to be triggered to prevent an overpower condition from passing through the optical circuit breaker responsive to the reference signal exceeding a user selectable threshold. The delay line may be configured to have a longer delay than a time it takes for the protection device to be triggered via the parallel protection path.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: October 8, 2019
    Assignee: The Johns Hopkins University
    Inventors: Joseph E. Sluz, Michael L. Dennis, Eric J. Adles, Raymond M. Sova, Chun-Huei Bair, Darrell A. Zinn, Edward H. Darlington
  • Patent number: 9825701
    Abstract: An optical communications beacon receiver including a camera for capturing a plurality of beacon images. The plurality of beacon images includes a beacon signal transmitted from a beacon transmitter. The beacon receiver also including processing circuitry configured for determining the state of the beacon signal for each of the plurality of beacon images based on the known pattern, at least one beacon image of the plurality of beacon images includes a beacon on state and at least one beacon image of the plurality of beacon images includes a beacon off state, comparing the at least one beacon image including the beacon on state to the at least one beacon image including the beacon off state, and determining a beacon location based on the comparison of the at least one beacon image including the beacon on state to the at least one beacon image including the beacon off state.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: November 21, 2017
    Assignee: The Johns Hopkins University
    Inventors: Juan C. Juarez, Radha A. Venkat, Ricardo Luna, David A. Kitchin, Melissa E. Jansen, David W. Young, Katherine T. Souza, Joseph E. Sluz, David M. Brown, Ryan P. DiNello-Fass, Hala J. Tomey
  • Publication number: 20160112124
    Abstract: An optical communications beacon receiver including a camera for capturing a plurality of beacon images. The plurality of beacon images includes a beacon signal transmitted from a beacon transmitter. The beacon receiver also including processing circuitry configured for determining the state of the beacon signal for each of the plurality of beacon images based on the known pattern, at least one beacon image of the plurality of beacon images includes a beacon on state and at least one beacon image of the plurality of beacon images includes a beacon off state, comparing the at least one beacon image including the beacon on state to the at least one beacon image including the beacon off state, and determining a beacon location based on the comparison of the at least one beacon image including the beacon on state to the at least one beacon image including the beacon off state.
    Type: Application
    Filed: October 12, 2015
    Publication date: April 21, 2016
    Inventors: Juan C. Juarez, Radha A. Venkat, Ricardo Luna, David A. Kitchin, Melissa E. Jansen, David W. Young, Katherine T. Souza, Joseph E. Sluz, David M. Brown, Ryan P. DiNello-Fass, Hala J. Tomey
  • Publication number: 20150198768
    Abstract: An optical circuit breaker includes a main optical transmission path including an optical coupler, a delay line and a protection device, and a parallel protection path configured to receive a tapped portion of a signal provided to the main optical transmission path and generate a reference signal based on the tapped portion. The protection device may be configured to be triggered to prevent an overpower condition from passing through the optical circuit breaker responsive to the reference signal exceeding a user selectable threshold. The delay line may be configured to have a longer delay than a time it takes for the protection device to be triggered via the parallel protection path.
    Type: Application
    Filed: January 8, 2015
    Publication date: July 16, 2015
    Inventors: Joseph E. Sluz, Michael L. Dennis, Eric J. Adles, Raymond M. Sova, Chun-Huei Bair, Darrell A. Zinn, Edward H. Darlington
  • Patent number: 8971701
    Abstract: A universal optical receiver may include an optical channel monitor configured to acquire spectral data for an optical signal on at least one selected optical channel, a tunable local oscillator configured to be tuned to a center frequency of the optical signal on the at least one selected optical channel, a storage device configured to store data associated with the optical signal responsive to acquisition of the spectral data and tuning of the tunable local oscillator, and processing circuitry configured to execute an algorithm that employs a plurality of binary distinctions based on physical characteristics of the optical signal and employs at least one calculation of figure of merit associated with a series of parameter values of the optical signal to identify a format of the optical signal.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: March 3, 2015
    Assignee: The Johns Hopkins University
    Inventors: Eric J. Adles, Michael L. Dennis, Raymond M. Sova, Joseph E. Sluz, Michael G. Taylor, Curtis R. Menyuk, John W. Zweck
  • Patent number: 8897657
    Abstract: To stabilize power to an optical multimode receiver a multimode variable optical attenuator is connected to the receiver with the attenuator's voltage being controlled using a feedback signal provided by an output detector, the signal being processed using a control algorithm based on proportional-integrate-differential theory.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: November 25, 2014
    Assignee: The Johns Hopkins University
    Inventors: Joseph E. Sluz, Juan C. Juarez, David W. Young
  • Patent number: 8888384
    Abstract: At least two single-mode optical fibers are fused together such that their cores are separated by only a few microns to serve as a capture element of an incoming beam of light in an optical terminal.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: November 18, 2014
    Assignee: The Johns Hopkins University
    Inventors: Juan C. Juarez, David W. Young, Joseph E. Sluz
  • Patent number: 8774635
    Abstract: Methods and systems to control a gain applied to a free-space optical (FSO) signal to reduce time-varying intensity fluctuations. An optical pre-amplifier may provide a first, relatively moderate gain with low noise factor (NF). A second optical amplifier may provide a second gain. Amplification may include doped fiber amplification (DFA), such as erbium-doped fiber amplification (EDFA) and/or Raman amplification. A variable optical attenuator (VOA) may be controllable with a relatively fast response time to reduce the time-varying intensity fluctuations. The VOA may effectively control an overall system gain. The gain of the first and/or second optical amplifier may also be controllable to reduce the time-varying intensity fluctuations. Optical intensities may be detected at one or more locations to support one or more feed-forward and/or feedback control loops. A clamp may be applied when an optical power reaches a threshold.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 8, 2014
    Assignee: The Johns Hopkins University
    Inventors: Juan C. Juarez, David W. Young, Joseph E. Sluz
  • Publication number: 20140064723
    Abstract: A universal optical receiver may include an optical channel monitor configured to acquire spectral data for an optical signal on at least one selected optical channel, a tunable local oscillator configured to be tuned to a center frequency of the optical signal on the at least one selected optical channel, a storage device configured to store data associated with the optical signal responsive to acquisition of the spectral data and tuning of the tunable local oscillator, and processing circuitry configured to execute an algorithm that employs a plurality of binary distinctions based on physical characteristics of the optical signal and employs at least one calculation of figure of merit associated with a series of parameter values of the optical signal to identify a format of the optical signal.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Eric J. Adles, Michael L. Dennis, Raymond M. Sova, Joseph E. Sluz, Michael G. Taylor, Curtis R. Menyuk, John W. Zwek
  • Patent number: 8667343
    Abstract: A customized bit error rate tester that characterizes data transmission through a free space optical channel that overcomes the limitations of commercial based bit error rate testers by providing visibility into packet based channel capacity by measuring bit-level statistics not dominated by fades. In this manner, fade characteristics can be measured and a relationship between fade time and data packet lengths can be developed. Further, analog outputs provide visual real-time data link statistics.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 4, 2014
    Assignee: The Johns Hopkins University
    Inventors: Joseph E. Sluz, James L. Riggins, II, Juan C. Juarez, David W. Young
  • Publication number: 20130004181
    Abstract: Methods and systems to control a gain applied to a free-space optical (FSO) signal to reduce time-varying intensity fluctuations. An optical pre-amplifier may provide a first, relatively moderate gain with low noise factor (NF). A second optical amplifier may provide a second gain. Amplification may include doped fiber amplification (DFA), such as erbium-doped fiber amplification (EDFA) and/or Raman amplification. A variable optical attenuator (VOA) may be controllable with a relatively fast response time to reduce the time-varying intensity fluctuations. The VOA may effectively control an overall system gain. The gain of the first and/or second optical amplifier may also be controllable to reduce the time-varying intensity fluctuations. Optical intensities may be detected at one or more locations to support one or more feed-forward and/or feedback control loops. A clamp may be applied when an optical power reaches a threshold.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Inventors: Juan C. Juarez, David W. Young, Joseph E. Sluz
  • Publication number: 20120063773
    Abstract: A customized bit error rate tester that characterizes data transmission through a free space optical channel that overcomes the limitations of commercial based bit error rate testers by providing visibility into packet based channel capacity by measuring bit-level statistics not dominated by fades. In this manner, fade characteristics can be measured and a relationship between fade time and data packet lengths can be developed. Further, analog outputs provide visual real-time data link statistics.
    Type: Application
    Filed: March 11, 2011
    Publication date: March 15, 2012
    Inventors: Joseph E. Sluz, James L. Riggins, II, Juan C. Juarez, David W. Young
  • Publication number: 20110229081
    Abstract: At least two single-mode optical fibers are fused together such that their cores are separated by only a few microns to serve as a capture element of an incoming beam of light in an optical terminal.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 22, 2011
    Inventors: Juan C. Juarez, David W. Young, Joseph E. Sluz
  • Publication number: 20110206386
    Abstract: To stabilize power to an optical multimode receiver a multimode variable optical attenuator is connected to the receiver with the attenuator's voltage being controlled using a feedback signal provided by an output detector, the signal being processed using a control algorithm based on proportional-integrate-differential theory.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 25, 2011
    Inventors: Joseph E. Sluz, Juan C. Juarez, David W. Young
  • Publication number: 20020109901
    Abstract: Hybrid methods and apparatus for transforming the state of polarization of an electromagnetic wave are provided. The method includes varying both the retardation and the angular rotation of at least one section of a polarization transformer.
    Type: Application
    Filed: August 15, 2001
    Publication date: August 15, 2002
    Inventors: Seong Woo Suh, George R. Gray, Joseph E. Sluz, Edem Ibragimov, Shih-Cheng Wang