Patents by Inventor Joseph F. Parker

Joseph F. Parker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11710818
    Abstract: A method of: placing a mixture of zinc particles; water; a water-soluble thickener; and water-insoluble inorganic porogen particles into a mold; evaporating the water to form a monolith; heating the monolith to fuse the zinc particles together; and submerging the monolith in a liquid that removes the porogen particles. A method of: placing a mixture of zinc particles; an aqueous acetic acid solution; and porogen particles into a mold; evaporating water to form a monolith; and submerging the monolith in a liquid that removes the porogen particles.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: July 25, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ryan H. DeBlock, Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison, Christopher N. Chervin
  • Publication number: 20230223514
    Abstract: A method of: placing a mixture of zinc particles; water; a water-soluble thickener; and water-insoluble inorganic porogen particles into a mold; evaporating the water to form a monolith; heating the monolith to fuse the zinc particles together; and submerging the monolith in a liquid that removes the porogen particles. A method of: placing a mixture of zinc particles; an aqueous acetic acid solution; and porogen particles into a mold; evaporating water to form a monolith; and submerging the monolith in a liquid that removes the porogen particles.
    Type: Application
    Filed: January 13, 2023
    Publication date: July 13, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ryan H. DeBlock, Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison, Christopher N. Chervin
  • Patent number: 11670759
    Abstract: Disclosed are methods of making porous zinc electrodes. Taken together, the steps are: forming a mixture of water, a soluble compound that increases the viscosity of the mixture, an insoluble porogen, and metallic zinc powder; placing the mixture in a mold to form a sponge; optionally drying the sponge; placing the sponge in a metal mesh positioned to allow air flow through substantially all the openings in the mesh; heating the sponge in an inert atmosphere at a peak temperature of 200 to 420° C. to fuse the zinc particles to each other to form a sintered sponge; and heating the sintered sponge in an oxygen-containing atmosphere at a peak temperature of 420 to 700° C. to form ZnO on the surfaces of the sintered sponge. The heating steps burn out the porogen.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: June 6, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brandon J. Hopkins, Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Patent number: 11296373
    Abstract: A zinc-air battery having: a cathode, an anode, an electrolyte, a separator between the anode and the cathode, and a housing. The cathode includes: a cathode current collector and a composite having a porous carbon material, a porous cryptomelane-type MnOx material, a porous NiyFe1-yOx material, and a binder. The anode includes: a continuous network having metallic zinc and having metallic zinc bridges connecting metallic zinc particle cores and a continuous network of void space interpenetrating the zinc network. The electrolyte fills the void space in the anode, is in contact with the cathode, and permeates the composite without completely filling or obstructing a majority of the pores. The housing encloses the anode, the cathode, and the separator and exposes the composite to ambient air.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: April 5, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison, Christopher N. Chervin
  • Publication number: 20210344001
    Abstract: Disclosed are methods of making porous zinc electrodes. Taken together, the steps are: forming a mixture of water, a soluble compound that increases the viscosity of the mixture, an insoluble porogen, and metallic zinc powder; placing the mixture in a mold to form a sponge; optionally drying the sponge; placing the sponge in a metal mesh positioned to allow air flow through substantially all the openings in the mesh; heating the sponge in an inert atmosphere at a peak temperature of 200 to 420° C. to fuse the zinc particles to each other to form a sintered sponge; and heating the sintered sponge in an oxygen-containing atmosphere at a peak temperature of 420 to 700° C. to form ZnO on the surfaces of the sintered sponge. The heating steps burn out the porogen.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brandon J. Hopkins, Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Patent number: 11069889
    Abstract: Disclosed are methods of making porous zinc electrodes. Taken together, the steps are: forming a mixture of water, a soluble compound that increases the viscosity of the mixture, an insoluble porogen, and metallic zinc powder; placing the mixture in a mold to form a sponge; optionally drying the sponge; placing the sponge in a metal mesh positioned to allow air flow through substantially all the openings in the mesh; heating the sponge in an inert atmosphere at a peak temperature of 200 to 420° C. to fuse the zinc particles to each other to form a sintered sponge; and heating the sintered sponge in an oxygen-containing atmosphere at a peak temperature of 420 to 700° C. to form ZnO on the surfaces of the sintered sponge. The heating steps burn out the porogen.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: July 20, 2021
    Assignee: The Government of the United Stales of America, as represented by the Secretare of the Navy
    Inventors: Brandon J. Hopkins, Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Publication number: 20210020916
    Abstract: Disclosed are methods of making porous zinc electrodes. Taken together, the steps are: forming a mixture of water, a soluble compound that increases the viscosity of the mixture, an insoluble porogen, and metallic zinc powder; placing the mixture in a mold to form a sponge; optionally drying the sponge; placing the sponge in a metal mesh positioned to allow air flow through substantially all the openings in the mesh; heating the sponge in an inert atmosphere at a peak temperature of 200 to 420° C. to fuse the zinc particles to each other to form a sintered sponge; and heating the sintered sponge in an oxygen-containing atmosphere at a peak temperature of 420 to 700° C. to form ZnO on the surfaces of the sintered sponge. The heating steps burn out the porogen.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 21, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brandon J. Hopkins, Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Patent number: 10804535
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: October 13, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Patent number: 10763500
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Patent number: 10720635
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 21, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Debra R. Rolison, Joseph F. Parker, Jeffrey W. Long, Jesse S. Ko
  • Publication number: 20190173141
    Abstract: A zinc-air battery having: a cathode, an anode, an electrolyte, a separator between the anode and the cathode, and a housing. The cathode includes: a cathode current collector and a composite having a porous carbon material, a porous cryptomelane-type MnOx material, a porous NiyFe1-yOx material, and a binder. The anode includes: a continuous network having metallic zinc and having metallic zinc bridges connecting metallic zinc particle cores and a continuous network of void space interpenetrating the zinc network. The electrolyte fills the void space in the anode, is in contact with the cathode, and permeates the composite without completely filling or obstructing a majority of the pores. The housing encloses the anode, the cathode, and the separator and exposes the composite to ambient air.
    Type: Application
    Filed: October 25, 2018
    Publication date: June 6, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison, Christopher N. Chervin
  • Patent number: 10008711
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; sintering the sponge to form a sintered sponge; heating the sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 26, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Debra R Rolison, Joseph F. Parker, Jeffrey W Long
  • Publication number: 20180130998
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 10, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Debra R. Rolison, Jeffrey W. Long, Jesse S. Ko
  • Publication number: 20170338479
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Application
    Filed: August 2, 2017
    Publication date: November 23, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Publication number: 20170331104
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Application
    Filed: August 2, 2017
    Publication date: November 16, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Patent number: 9802254
    Abstract: A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; sintering the sponge in an inert atmosphere to form a sintered sponge; heating the sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and heating the oxidized sponge in an inert atmosphere at above the melting point of the zinc. A method of: providing an emulsion comprising a zinc powder and a liquid phase; placing the emulsion into a mold, wherein the emulsion is in contact with a metal substrate; and drying the emulsion to form a sponge.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: October 31, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Debra R. Rolison, Joseph F. Parker, Jeffrey W. Long
  • Publication number: 20160093890
    Abstract: A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; sintering the sponge in an inert atmosphere to form a sintered sponge; heating the sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and heating the oxidized sponge in an inert atmosphere at above the melting point of the zinc. A method of: providing an emulsion comprising a zinc powder and a liquid phase; placing the emulsion into a mold, wherein the emulsion is in contact with a metal substrate; and drying the emulsion to form a sponge.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Debra R. Rolison, Joseph F. Parker, Jeffrey W. Long
  • Publication number: 20140147757
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; sintering the sponge to form a sintered sponge; heating the sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 29, 2014
    Applicant: The Government of the United States of America, as represented by the Ssecretary of the Navy
    Inventors: Debra R. Rolison, Joseph F. Parker, Jeffrey W. Long