Patents by Inventor Joseph Florio

Joseph Florio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080065186
    Abstract: An implantable cardiac lead system suitable for placement in the coronary sinus region of the heart. The lead system comprises a lead having two or more non-helical bends in its distal portion. The two or more non-helical bends cooperate to prevent the lead from dislodgment or displacement inside the coronary sinus. The lead system may further comprise a stylet suitable for steering the lead into at least one of the coronary sinus vein, great cardiac vein, left marginal vein, left posterior ventricular vein, and small cardiac vein. The stylet is tapered in its distal portion to provide enhanced maneuverability and steerability inside the coronary sinus region. The lead system may also comprise an introducer which aids in introducing the lead into the heart.
    Type: Application
    Filed: November 7, 2007
    Publication date: March 13, 2008
    Applicant: PACESETTER, INC.
    Inventors: Anne Pianca, Kevin Morgan, Gene Bornzin, Joseph Florio, David Vachon
  • Publication number: 20060167518
    Abstract: Techniques are described for detecting ischemia, hypoglycemia or hyperglycemia based on intracardiac electrogram (IEGM) signals. Ischemia is detected based on a shortening of the interval between the QRS complex and the end of a T-wave (QTmax), alone or in combination with a change in ST segment elevation. Alternatively, ischemia is detected based on a change in ST segment elevation combined with minimal change in the interval between the QRS complex and the end of the T-wave (QTend). Hypoglycemia is detected based on a change in ST segment elevation along with a lengthening of either QTmax or QTend. Hyperglycemia is detected based on a change in ST segment elevation along with minimal change in QTmax and in QTend. By exploiting QTmax and QTend in combination with ST segment elevation, changes in ST segment elevation caused by hypo/hyperglycemia can be properly distinguished from changes caused by ischemia.
    Type: Application
    Filed: January 25, 2005
    Publication date: July 27, 2006
    Inventors: Jong Gill, Peter Boileau, Rupinder Bharmi, Xiaoyi Min, Joseph Florio, Michael Benser, Gene Bornzin
  • Publication number: 20060167517
    Abstract: Techniques are described for detecting ischemia, hypoglycemia or hyperglycemia based on intracardiac electrogram (IEGM) signals. Ischemia is detected based on a shortening of the interval between the QRS complex and the end of a T-wave (QTmax), alone or in combination with a change in ST segment elevation. Alternatively, ischemia is detected based on a change in ST segment elevation combined with minimal change in the interval between the QRS complex and the end of the T-wave (QTend). Hypoglycemia is detected based on a change in ST segment elevation along with a lengthening of either QTmax or QTend. Hyperglycemia is detected based on a change in ST segment elevation along with minimal change in QTmax and in QTend. By exploiting QTmax and QTend in combination with ST segment elevation, changes in ST segment elevation caused by hypo/hyperglycemia can be properly distinguished from changes caused by ischemia.
    Type: Application
    Filed: January 25, 2005
    Publication date: July 27, 2006
    Inventors: Jong Gill, Peter Boileau, Rupinder Bharmi, Xiaoyi Min, Joseph Florio, Michael Benser, Gene Bornzin
  • Publication number: 20060167519
    Abstract: Techniques are described for detecting ischemia, hypoglycemia or hyperglycemia based on intracardiac electrogram (IEGM) signals. Ischemia is detected based on a shortening of the interval between the QRS complex and the end of a T-wave (QTmax), alone or in combination with a change in ST segment elevation. Alternatively, ischemia is detected based on a change in ST segment elevation combined with minimal change in the interval between the QRS complex and the end of the T-wave (QTend). Hypoglycemia is detected based on a change in ST segment elevation along with a lengthening of either QTmax or QTend. Hyperglycemia is detected based on a change in ST segment elevation along with minimal change in QTmax and in QTend. By exploiting QTmax and QTend in combination with ST segment elevation, changes in ST segment elevation caused by hypo/hyperglycemia can be properly distinguished from changes caused by ischemia.
    Type: Application
    Filed: January 25, 2005
    Publication date: July 27, 2006
    Inventors: Jong Gill, Peter Boileau, Rupinder Bharmi, Xiaoyi Min, Joseph Florio, Michael Benser, Gene Bornzin