Patents by Inventor Joseph Forrest

Joseph Forrest has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150179003
    Abstract: A method and system for determining rail defects. The method and system receive route performance measurements from a vehicle system traveling along a route and normalize the route performance measurements based on one or more characteristics of the vehicle system. The method and a system also determine a defect for a segment of the route based at least in part on the normalized route performance measurements with respect to a threshold bandwidth corresponding to the segment. The method and system also examine velocity differences in a vehicle speed of a vehicle and the angular speed of the axles and/or wheels of the vehicle system traveling along a route to determine if the route is damaged and/or to identify the location of the potentially damaged section of the route. The differences may represent wheel creeps of the vehicle system.
    Type: Application
    Filed: March 5, 2015
    Publication date: June 25, 2015
    Inventors: Jared Klineman Cooper, John Charles Hounschell, II, Nick David Nagrodsky, Aaron Mitti, Ajith Kuttannair Kumar, David Michael Peltz, Brian Lawry, Joseph Forrest Noffsinger
  • Publication number: 20150158511
    Abstract: A method and system for monitoring a points machine obtains operating characteristics of the points machine that are representative of operations of the points machine during a movement event of rails at a switch. A waveform of the operating characteristics is examined to at least one of identify or predict a problem with the operations of the points machine. The waveform is examined by comparing the operating characteristics during the first movement event with at least one of: the operating characteristics obtained during a previous movement event; an expected value of the operating characteristics; or an expected duration of a moving time period during which the first rail is expected to move from or to an unlocked position.
    Type: Application
    Filed: October 31, 2014
    Publication date: June 11, 2015
    Inventors: Jeffrey Michael Fries, Joseph Forrest Noffsinger, Richard Lee Lawson, Aric Albert Weingartner, Curtis Doyle Mechling, Aaron Richard Mitti, Martin Paget, William David Shields
  • Publication number: 20150158510
    Abstract: A wayside monitoring method and system monitor a transmitted current that is injected into conductive components of a route traveled by vehicle systems, monitor a received current that represents a portion of the transmitted current that is conducted through the conductive components of the route, examine changes in the transmitted and/or received current over time to determine when the vehicle systems are on the route between a first location where the transmitted current is injected into the conductive components and a second location where the received current is monitored, and examine the changes in the transmitted and/or received currents. The changes are examined to identify (a) a contaminated portion of a surface on which the route is disposed, (b) a foreign object other than the vehicle systems that is contacting the route, and/or (c) a damaged or broken portion of at least one of the conductive components of the route.
    Type: Application
    Filed: October 13, 2014
    Publication date: June 11, 2015
    Inventors: Jeffrey Michael Fries, Joseph Forrest Noffsinger, Richard Lee Lawson, Aric Albert Weingartner, Curtis Doyle Mechling, Aaron Richard Mitti, Martin Paget, William David Shields
  • Publication number: 20150081214
    Abstract: A method and system for examining velocity differences in a vehicle speed of a vehicle and the angular speed of the axles and/or wheels of the vehicle system traveling along a route to determine if the route is damaged and/or to identify the location of the potentially damaged section of the route. The differences may represent wheel creeps of the vehicle system.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 19, 2015
    Inventors: Jared Klineman Cooper, John Charles Hounschell, II, Nick David Nagrodsky, Aaron Richard Mitti, Ajith Kuttannair Kumar, David Michael Peltz, Brian D. Lawry, Joseph Forrest Noffsinger
  • Publication number: 20150053827
    Abstract: A route examining system includes first and second application devices, a control unit, first and second detection units, and an identification unit. The first and second application devices are disposed onboard a vehicle traveling along a route having conductive tracks. The control unit controls injection of a first examination signal into the conductive tracks via the first application device and injection of a second examination signal into the conductive tracks via the second application device. The first and second detection units monitor electrical characteristics of the route in response to the first and second examination signals being injected into the conductive tracks. The identification unit examines the electrical characteristics of the conductive tracks in order to determine whether a section of the route is potentially damaged based on the electrical characteristics.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 26, 2015
    Inventors: Joseph Forrest Noffsinger, Ajith Kuttannair Kumar, Yuri Alexeyevich Plotnikov, Jeffrey Michael Fries, Steven Joseph Ehret
  • Publication number: 20150033864
    Abstract: A method for acoustically examining a route includes sensing passively excited residual sounds of a vehicle system during travel over a route, examining the passively excited residual sounds to identify one or more changes of interest in the passively excited residual sounds, and identifying a section of the route as being damaged responsive to the one or more changes of interest in the passively excited residual sounds that are identified.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: General Electric Company
    Inventors: Ajith Kuttannair Kumar, Joseph Forrest Noffsinger, Edward J. Nieters
  • Publication number: 20140371959
    Abstract: A method including obtaining creep measurements and tractive/braking measurements from at least one vehicle system at different locations along a route segment while the at least one vehicle system moves through the route segment. The method also includes calculating tribology characteristics of the route segment at the different locations. The tribology characteristics are based on the creep measurements and the tractive/braking measurements from the at least one vehicle system. The tribology characteristics are indicative of a friction coefficient of the route segment at the different locations. The method also includes determining an effectiveness of a friction modifier applied to the route segment based on the tribology characteristics.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 18, 2014
    Applicant: General Electric Company
    Inventors: Ajith Kuttannair Kumar, Joseph Forrest Noffsinger
  • Patent number: 8914171
    Abstract: A route examining system includes first and second application devices, a control unit, first and second detection units, and an identification unit. The first and second application devices are disposed onboard a vehicle traveling along a route having conductive tracks. The control unit controls injection of a first examination signal into the conductive tracks via the first application device and injection of a second examination signal into the conductive tracks via the second application device. The first and second detection units monitor electrical characteristics of the route in response to the first and second examination signals being injected into the conductive tracks. The identification unit examines the electrical characteristics of the conductive tracks in order to determine whether a section of the route is potentially damaged based on the electrical characteristics.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: December 16, 2014
    Assignee: General Electric Company
    Inventors: Joseph Forrest Noffsinger, Ajith Kuttannair Kumar, Yuri Alexeyevich Plotnikov, Jeffrey Michael Fries, Srilatha Boyanapally, Steven Joseph Ehret
  • Publication number: 20140222971
    Abstract: Methods and systems are provided for processing data generated in a vehicle group. One example embodiment comprises selectively off-boarding a data set generated at a first vehicle in the vehicle group for storage purposes, the first data set off-boarded to one or more of a second vehicle in the vehicle group and a remote storage device.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Inventors: Jared Klineman Cooper, John Brand, Todd William Goodermuth, Scott Nelson, Joseph Forrest Noffsinger, Nick David Nagrodsky, Aaron Richard Mitti
  • Publication number: 20140207317
    Abstract: A system includes an application device, a control unit, a detection unit, an identification unit, and a secondary analysis module. The application device is configured to be at least one of conductively or inductively coupled with a route. The control unit is configured to control supply of electric current to inject an examination signal into the route via the application device. The detection unit is configured to monitor one or more electrical characteristics of the route. The identification unit is configured to examine the one or more electrical characteristics of the route to determine whether a section of the route is potentially damaged. The secondary analysis module is configured to perform a secondary analysis of the potentially damaged section of the route to at least one of confirm that damage has occurred, identify a type of damage, or assess a level of damage.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: General Electric Company
    Inventors: Joseph Forrest Noffsinger, Ajith Kuttannair Kumar, Jeffrey Michael Fries, Jared Klineman Cooper, Steven Ehret
  • Patent number: 8788135
    Abstract: A method for operating a powered system, the method including determining whether a mission plan of the powered system is correct to satisfy at least one mission objective of the powered system, if not, updating information used to establish the mission plan, revising the mission plan based on the updated information to satisfy the at least one mission objective, and operating the powered system based on the revised mission plan. A system and a computer software code for operating a powered system are also disclosed.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: July 22, 2014
    Assignee: General Electric Company
    Inventors: Wolfgang Daum, Ajith Kuttannair Kumar, Glenn Robert Shaffer, Joseph Forrest Noffsinger, Robert James Foy, David Lowell McKay
  • Publication number: 20140180499
    Abstract: A communication system includes a first wireless communication device disposed onboard a vehicle system having two or more propulsion-generating vehicles that are mechanically interconnected with each other. The communication system also includes a controller configured to be disposed onboard the vehicle system and operatively connected with the first wireless communication device in order to control operations of the device. The controller is configured to direct the first wireless communication device to switch between operating in an off-board communication mode and an onboard communication mode. When the first wireless communication device is operating in the off-board communication mode, the device is configured to receive remote data signals from a location that is disposed off-board of the vehicle system.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jared Klineman Cooper, Robert James Foy, David Michael Peltz, Eugene Smith, Steven Andrew Kellner, Brian William Schroeck, Keith Gilbertson, Joseph Forrest Noffsinger, Wolfgang Daum
  • Publication number: 20140151460
    Abstract: A system for use with a vehicle includes at least one nozzle and an fluid reservoir capable of holding a volume of pressurized gas or other fluid. The air reservoir is in fluid communication with the at least one nozzle and the at least one nozzle is selectively operable to direct the pressurized gas or other fluid at a surface of an optical inspection sensor assembly to remove contaminants from the sensor assembly.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 5, 2014
    Inventors: Joseph Forrest Noffsinger, John Kramer, Bret Dwayne Worden, Ajith Kumar
  • Publication number: 20140151512
    Abstract: An inspection system for use with a rail vehicle includes a sensor configured to be deployed onboard the rail vehicle for inspection of wayside rail equipment to determine operability or alignment of the equipment.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 5, 2014
    Inventors: JARED KLINEMAN COOPER, NICHOLAS DAVID NAGRODSKY, JOSEPH FORREST NOFFSINGER
  • Publication number: 20140138493
    Abstract: A route examining system includes first and second application devices, a control unit, first and second detection units, and an identification unit. The first and second application devices are disposed onboard a vehicle traveling along a route having conductive tracks. The control unit controls injection of a first examination signal into the conductive tracks via the first application device and injection of a second examination signal into the conductive tracks via the second application device. The first and second detection units monitor electrical characteristics of the route in response to the first and second examination signals being injected into the conductive tracks. The identification unit examines the electrical characteristics of the conductive tracks in order to determine whether a section of the route is potentially damaged based on the electrical characteristics.
    Type: Application
    Filed: September 3, 2013
    Publication date: May 22, 2014
    Inventors: Joseph Forrest Noffsinger, Ajith Kuttannair Kumar, Yuri Alexeyevich Plotnikov, Jeffrey Michael Fries, Srilatha Boyanapally, Steven Joseph Ehret
  • Publication number: 20140136025
    Abstract: A method includes forming a first schedule for a first vehicle to travel in a transportation network. The first schedule includes a first arrival time of the first vehicle at a scheduled location. The method also includes receiving a first trip plan for the first vehicle from an energy management system. The first trip plan is based on the first schedule and designates at least one of tractive efforts or braking efforts to be provided by the first vehicle to reduce at least one of an amount of energy consumed by the first vehicle or an amount of emissions generated by the first vehicle when the first vehicle travels through the transportation network to the scheduled location. The method further includes determining whether to modify the first schedule to avoid interfering with movement of one or more other vehicles by examining the trip plan for the first vehicle.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Applicant: General Electric Company
    Inventors: Jared Klineman Cooper, Joseph Forrest Noffsinger, Ajith Kuttannair Kumar, Mason Samuels, Paul Houpt, Joel Kickbusch, Mahir Telatar, David Eldredge, Mitchell Scott Wills, Ramu Chandra
  • Publication number: 20140125356
    Abstract: A system includes at least one examining module configured to be disposed onboard a vehicle system and a mitigation module. The at least one examining module is configured to identify an identified section of a route being traversed by the vehicle system, with the identified section corresponding to at least one of a potentially damaged section of the route or an actually damaged section of the route. The mitigation module is configured to, responsive to an identification by the at least one examining module of the identified section of the route, automatically perform a mitigation action corresponding to the identified section of the route.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 8, 2014
    Applicant: General Electric Company
    Inventors: Jared Klineman Cooper, Ajith Kuttannair Kumar, Joseph Forrest Noffsinger
  • Publication number: 20140129154
    Abstract: A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: General Electric Company
    Inventors: Jared Klineman Cooper, Mark Bradshaw Kraeling, Eugene Smith, James Glen Corry, David Lowell McKay, Brian Joseph McManus, Keith Szewczyk, Joseph Forrest Noffsinger
  • Patent number: 8676410
    Abstract: A system is provided for pacing a plurality of powered systems traveling along a route. The plurality of powered systems include a constraining powered system and at least one trailing powered system traveling behind the constraining powered system along the route. The system includes one or more controllers configured to control the constraining powered system to travel along the route according to respective predetermined operating parameters at respective incremental locations along the route. The system further includes one of said controllers being configured to control the trailing powered system to travel along the route according to the respective predetermined operating parameters of the constraining powered system at the respective incremental locations along the route. A method is also provided for pacing a plurality of powered systems traveling along the route.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Paul Kenneth Houpt, Joseph Forrest Noffsinger, Glenn Robert Shaffer, James D. Brooks
  • Patent number: 8655515
    Abstract: A communication system for a rail vehicle consist includes antenna modules, routing modules, and an arbitration module. The antenna modules are disposed at spaced apart locations along the consist and receive network data from an off-board device. The routing modules are communicatively coupled with the antenna modules and receive the network data from the antenna modules. The routing modules are communicatively coupled with a network connection extending along the rail vehicle consist. The arbitration module is communicatively coupled with the network connection. The arbitration module forms a message represented by the network data. One or more of the routing modules transmits the network data received from the off-board device to the arbitration module over the network connection. The arbitration module receives the network data to form the message and transmits the message to one or more powered units of the rail vehicle consist through the network connection.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: February 18, 2014
    Assignee: General Electric Company
    Inventors: Joseph Forrest Noffsinger, Robert Foy, Brian McManus, Stephen Smith, John Brand, Jared Klineman Cooper, Kevin Kapp, Kaitlyn Hrdlicka