Patents by Inventor Joseph G Gordon

Joseph G Gordon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11276886
    Abstract: Embodiments of the invention generally relate to solid state battery structures, such as Li-ion batteries, methods of fabrication and tools for fabricating the batteries. One or more electrodes and the separator may each be cast using a green tape approach wherein a mixture of active material, conductive additive, polymer binder and/or solid electrolyte are molded or extruded in a roll to roll or segmented sheet/disk process to make green tape, green disks or green sheets. A method of fabricating a solid state battery may include: preparing and/or providing a green sheet of positive electrode material; preparing and/or providing a green sheet of separator material; laminating together the green sheet of positive electrode material and the green sheet of separator material to form a laminated green stack; and sintering the laminated green stack to form a sintered stack comprising a positive electrode and a separator.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: March 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Subramanya P. Herle, Joseph G. Gordon, II
  • Patent number: 10756321
    Abstract: The present invention relates generally to electrochemical energy storage devices such as Li-ion batteries, and more particularly to a method of providing uniform ceramic coatings with controlled thicknesses for separators in such storage devices. Some embodiments of the invention utilize a layer by layer coating of nano/micro-sized particles dispersed in a solvent, which can be aqueous or non-aqueous. Other embodiments of the invention utilize a dry process such as PVD for depositing a ceramic film on a porous polyolefin separator. According to certain aspects of the invention, advantages of this approach include the ability to achieve a denser more uniform film with better controlled thickness with less waste and higher yield than current ceramic coating technology. An advantage of a ceramic coated separator is increased safety of cells.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Subramanya P. Herle, Joseph G. Gordon
  • Publication number: 20200185780
    Abstract: Embodiments of the invention generally relate to solid state battery structures, such as Li-ion batteries, methods of fabrication and tools for fabricating the batteries. One or more electrodes and the separator may each be cast using a green tape approach wherein a mixture of active material, conductive additive, polymer binder and/or solid electrolyte are molded or extruded in a roll to roll or segmented sheet/disk process to make green tape, green disks or green sheets. A method of fabricating a solid state battery may include: preparing and/or providing a green sheet of positive electrode material; preparing and/or providing a green sheet of separator material; laminating together the green sheet of positive electrode material and the green sheet of separator material to form a laminated green stack; and sintering the laminated green stack to form a sintered stack comprising a positive electrode and a separator.
    Type: Application
    Filed: January 28, 2020
    Publication date: June 11, 2020
    Inventors: Subramanya P. HERLE, Joseph G. GORDON
  • Publication number: 20190165348
    Abstract: The present invention relates generally to electrochemical energy storage devices such as Li-ion batteries, and more particularly to a method of providing uniform ceramic coatings with controlled thicknesses for separators in such storage devices. Some embodiments of the invention utilize a layer by layer coating of nano/micro-sized particles dispersed in a solvent, which can be aqueous or non-aqueous. Other embodiments of the invention utilize a dry process such as PVD for depositing a ceramic film on a porous polyolefin separator. According to certain aspects of the invention, advantages of this approach include the ability to achieve a denser more uniform film with better controlled thickness with less waste and higher yield than current ceramic coating technology. An advantage of a ceramic coated separator is increased safety of cells.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 30, 2019
    Inventors: Subramanya P. HERLE, Joseph G. GORDON
  • Publication number: 20190148694
    Abstract: The present invention relates generally to electrochemical energy storage devices such as Li-ion batteries, and more particularly to a method of providing uniform ceramic coatings with controlled thicknesses for separators in such storage devices. Some embodiments of the invention utilize a layer by layer coating of nano/micro-sized particles dispersed in a solvent, which can be aqueous or non-aqueous. Other embodiments of the invention utilize a dry process such as PVD for depositing a ceramic film on a porous polyolefin separator. According to certain aspects of the invention, advantages of this approach include the ability to achieve a denser more uniform film with better controlled thickness with less waste and higher yield than current ceramic coating technology. An advantage of a ceramic coated separator is increased safety of cells.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 16, 2019
    Inventors: Subramanya P. HERLE, Joseph G. GORDON
  • Patent number: 10193116
    Abstract: The present invention relates generally to electrochemical energy storage devices such as Li-ion batteries, and more particularly to a method of providing uniform ceramic coatings with controlled thicknesses for separators in such storage devices. Some embodiments of the invention utilize a layer by layer coating of nano/micro-sized particles dispersed in a solvent, which can be aqueous or non-aqueous. Other embodiments of the invention utilize a dry process such as PVD for depositing a ceramic film on a porous polyolefin separator. According to certain aspects of the invention, advantages of this approach include the ability to achieve a denser more uniform film with better controlled thickness with less waste and higher yield than current ceramic coating technology. An advantage of a ceramic coated separator is increased safety of cells.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: January 29, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Subramanya P. Herle, Joseph G. Gordon
  • Publication number: 20180198171
    Abstract: Embodiments of the invention generally relate to solid state battery structures, such as Li-ion batteries, methods of fabrication and tools for fabricating the batteries. One or more electrodes and the separator may each be cast using a green tape approach wherein a mixture of active material, conductive additive, polymer binder and/or solid electrolyte are molded or extruded in a roll to roll or segmented sheet/disk process to make green tape, green disks or green sheets. A method of fabricating a solid state battery may include: preparing and/or providing a green sheet of positive electrode material; preparing and/or providing a green sheet of separator material; laminating together the green sheet of positive electrode material and the green sheet of separator material to form a laminated green stack; and sintering the laminated green stack to form a sintered stack comprising a positive electrode and a separator.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventors: Subramanya P. HERLE, Joseph G. GORDON, II
  • Patent number: 9912014
    Abstract: Embodiments of the invention generally relate to solid state battery structures, such as Li-ion batteries, methods of fabrication and tools for fabricating the batteries. One or more electrodes and the separator may each be cast using a green tape approach wherein a mixture of active material, conductive additive, polymer binder and/or solid electrolyte are molded or extruded in a roll to roll or segmented sheet/disk process to make green tape, green disks or green sheets. A method of fabricating a solid state battery may include: preparing and/or providing a green sheet of positive electrode material; preparing and/or providing a green sheet of separator material; laminating together the green sheet of positive electrode material and the green sheet of separator material to form a laminated green stack; and sintering the laminated green stack to form a sintered stack comprising a positive electrode and a separator.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: March 6, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Subramanya P. Herle, Joseph G. Gordon, II
  • Publication number: 20180047980
    Abstract: Disclosed are a cathode active material for a lithium secondary battery, and a lithium secondary battery including the same. The disclosed cathode active material includes a core including a compound represented by Formula 1; and a shell including a compound represented by Formula 2, in which the core and the shell have different material compositions.
    Type: Application
    Filed: October 20, 2017
    Publication date: February 15, 2018
    Inventors: BYUNG-SUNG LEO KWAK, JOSEPH G. GORDON, II, OMKARAM NALAMASU, YANGKOOK SUN, WONGI KIM, SEUNGMIN OH
  • Patent number: 9685655
    Abstract: A method and apparatus for forming battery active material on a substrate are disclosed. In one embodiment, an apparatus for depositing a battery active material on a surface of a substrate includes a substrate conveyor system for transporting the substrate within the apparatus, a material spray assembly disposed above the substrate conveyor system, and a first heating element disposed adjacent to the material spray assembly above the substrate conveyor system configured to heat the substrate. The material spray assembly has a 2-D array of nozzles configured to electrospray an electrode forming solution on the surface of the substrate.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: June 20, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Fei C. Wang, Hooman Bolandi, Connie P. Wang, Victor Pebenito, Siqing Lu, Michael C. Kutney, Joseph G. Gordon, Robert Z. Bachrach
  • Publication number: 20160343552
    Abstract: Methods and apparatus are described for improving the fabrication of thin film electrochemical devices such as thin film batteries and electrochromic devices, with respect to deposition of LiPON, or other lithium ion conducting electrolyte, thin films on electrodes such as Li metal, Li—CoO2, WO3, NiO, etc.
    Type: Application
    Filed: January 26, 2015
    Publication date: November 24, 2016
    Inventors: Lizhong SUN, Byung-Sung Leo KWAK, Joseph G. GORDON, II
  • Publication number: 20160308243
    Abstract: A hybrid solid state battery may comprise: a metal ion negative half-cell; a metal ion conducting solid state electrolyte separator; and a positive half-cell comprising an electrolyte selected from the group consisting of a liquid electrolyte, a gel electrolyte and a polymer electrolyte; wherein the solid state electrolyte separator is between the metal ion negative half-cell and the electrolyte in the positive half-cell. The solid state battery may be a Li-ion battery, with a Li-ion conducting solid state electrolyte separator, such as one or more of LiPON, Li7La3Zr2O12, doped anti-perovskite compositions, Li2S—P2S5, Li10GeP2S12, and Li3PS4, for example.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 20, 2016
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Subramanya P. HERLE, Joseph G. GORDON
  • Patent number: 9331331
    Abstract: The present invention generally relates to using water-based binders for high voltage cathode materials, such as LMNO (spinel LiNi0.5Mn1.5O4), in Li-ion batteries. An example of a water compatible polymer binder according to some embodiments of the present invention is a combination of CMC (carboxymethylcellulose) and a second water compatible polymer that produce coatings of adequate thickness and loading (mAh/cm2). A method of forming a cathode for a Li-ion battery may include: preparing an aqueous solution of CMC; mixing together LMNO and carbon black; combining the LMNO and carbon black mixture with the CMC solution, an aqueous polyacrylic solution and distilled water, and mixing to form a slurry; coating a conductive substrate with the slurry; and drying the coated substrate, forming a cathode layer on the substrate. Furthermore, this invention describes a cathode for Li-ion batteries and tools for carrying out the above method.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: May 3, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Fei Wang, Subramanya P. Herle, Joseph G. Gordon, GirishKumar Gopalakrishnan Nair
  • Patent number: 9252320
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: February 2, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Daoying Song, Chong Jiang, Byung-Sung Leo Kwak, Joseph G. Gordon, II
  • Patent number: 9252308
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: February 2, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Daoying Song, Chong Jiang, Byung-Sung Leo Kwak, Joseph G. Gordon, II
  • Publication number: 20160020454
    Abstract: A method and apparatus for forming battery active material on a substrate are disclosed. In one embodiment, an apparatus for depositing a battery active material on a surface of a substrate includes a substrate conveyor system for transporting the substrate within the apparatus, a material spray assembly disposed above the substrate conveyor system, and a first heating element disposed adjacent to the material spray assembly above the substrate conveyor system configured to heat the substrate. The material spray assembly has a 2-D array of nozzles configured to electrospray an electrode forming solution on the surface of the substrate.
    Type: Application
    Filed: March 6, 2014
    Publication date: January 21, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Fei C. WANG, Hooman BOLANDI, Connie P. WANG, Victor PEBENITO, Siqing LU, Michael C. KUTNEY, Joseph G. GORDON, Robert Z. BACHRACH
  • Patent number: 9240508
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: January 19, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Daoying Song, Chong Jiang, Byung-Sung Leo Kwak, Joseph G. Gordon, II
  • Publication number: 20150364630
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Application
    Filed: March 30, 2015
    Publication date: December 17, 2015
    Inventors: Daoying SONG, Chong JIANG, Byung-Sung Leo KWAK, Joseph G. GORDON, II
  • Publication number: 20150364638
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Application
    Filed: March 30, 2015
    Publication date: December 17, 2015
    Inventors: Daoying SONG, Chong JIANG, Byung-Sung Leo KWAK, Joseph G. GORDON, II
  • Publication number: 20150364629
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Application
    Filed: March 30, 2015
    Publication date: December 17, 2015
    Inventors: Daoying SONG, Chong JIANG, Byung-Sung Leo KWAK, Joseph G. GORDON, II