Patents by Inventor Joseph G. Smith, Jr.

Joseph G. Smith, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7972536
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: July 5, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Joycelyn S. Harrison, Cheol Park, Kent A. Watson, Zoubeida Ounaies
  • Patent number: 7723464
    Abstract: Novel compositions of matter comprise certain derivatives of 9,9-dialkyl fluorene diamine (AFDA). The resultant compositions, whether compositions of matter or monomers that are subsequently incorporated into a polymer, are unique and useful in a variety of applications. Useful applications of AFDA-based material include heavy ion radiation shielding components and components of optical and electronic devices.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: May 25, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Donovan M. Delozier, Kent A. Watson, John W. Connell, Joseph G. Smith, Jr.
  • Publication number: 20100084618
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Application
    Filed: August 25, 2009
    Publication date: April 8, 2010
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, JR., Joycelyn S. Harrison, Cheol Park, Kent A. Watson, Zoubeida Ounaies
  • Patent number: 7109287
    Abstract: Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (Tg) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: September 19, 2006
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother, Kent A. Watson, Craig M. Thompson
  • Patent number: 6958192
    Abstract: The present invention relates generally to polyimides. It relates particularly to novel polyimides prepared from 2,3,3?,4?-biphenyltetracarboxylic dianhydride and aromatic diamines. These novel polyimides have low color, good solubility, high thermal emissivity, low solar absorptivity and high tensile strength.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: October 25, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul M. Hergenrother, Joseph G. Smith, Jr., John W. Connell, Kent A. Watson
  • Patent number: 6841652
    Abstract: Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (Tg) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: January 11, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother, Kent A. Watson, Craig M. Thompson
  • Patent number: 6441099
    Abstract: Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: August 27, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Adminstration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 6350817
    Abstract: Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: February 26, 2002
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 6124035
    Abstract: High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275.degree. C., and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300.degree. C., these materials have a broad processing window. Upon thermal cure at .about.300-350.degree. C., the phenylethynyl groups react to provide a crosslinked resin system.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: September 26, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 5689004
    Abstract: Controlled molecular weight imide oligomers and co-oligomers containing pendent phenylethynyl groups (PEPIs) and endcapped with nonreactive or phenylethynyl groups have been prepared by the cyclodehydration of the precursor amide acid oligomers or co-oligomers containing pendent phenylethynyl groups and endcapped with nonreactive or phenylethynyl groups. The amine terminated amide acid oligomers or co-oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and diamine containing pendent phenylethynyl groups and subsequently endcapped with a phenylethynyl phthalic anhydride or monofunctional anhydride. The anhydride terminated amide acid oligomers and co-oligomers are prepared from the reaction of diamine(s) and diamine containing pendent phenylethynyl group(s) with an excess of dianhydride(s) and subsequently endcapped with a phenylethynyl amine or monofunctional amine.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: November 18, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 5681967
    Abstract: Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: October 28, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5637670
    Abstract: Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: June 10, 1997
    Assignee: The United States of America as represented by the Administrator, National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5606014
    Abstract: Controlled molecular weight imide oligomers and co-oligomers containing pendent phenylethynyl groups (PEPIs) and endcapped with nonreactive or phenylethynyl groups have been prepared by the cyclodehydration of the precursor amide acid oligomers or co-oligomers containing pendent phenylethynyl groups and endcapped with nonreactive or phenylethynyl groups. The amine terminated amide acid oligomers or co-oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and diamine containing pendent phenylethynyl groups and subsequently endcapped with a phenylethynyl phthalic anhydride or monofunctional anhydride. The anhydride terminated amide acid oligomers and co-oligomers are prepared from the reaction of diamine(s) and diamine containing pendent phenylethynyl group(s) with an excess of dianhydride(s) and subsequently endcapped with a phenylethynyl amine or monofunctional amine. The polymerizations are carried out in polar aprotic solvents such as under nitrogen at room temperature.
    Type: Grant
    Filed: August 4, 1995
    Date of Patent: February 25, 1997
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 5567800
    Abstract: Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: October 22, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5554715
    Abstract: Novel poly(N-arylenebenzimidazole)s (PNABls) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl-N-arylenebenzimidazole) monomers are synthesized by reacting phenyl-4-hydroxybenzoate with bis(2-aminoanilino)arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyI-N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: September 10, 1996
    Assignee: The United States of America as represented by the Administrator of National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5412059
    Abstract: Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
    Type: Grant
    Filed: April 5, 1993
    Date of Patent: May 2, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5410012
    Abstract: Novel poly(N-arylenebenzimidazole)s (PNABIs) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl-N-arylenebenzimidazole) monomers are synthesized by reacting phenyl-4-hydroxybenzoate with bis(2-aminoanilino)arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyl-N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.
    Type: Grant
    Filed: March 5, 1993
    Date of Patent: April 25, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5270432
    Abstract: Polybenzoxazoles (PBO) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl)benzoxazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents, such as N-methylpyrrolidine or N,N-dimethylacetamide, using alkali metal bases, such as potassium carbonate, at elevated temperatures under nitrogen. The novel di(hydroxyphenyl)benzoxazole monomers are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic bis(o-aminophenol)s in the melt. High molecular weight PBO of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyl)benzoxazoles permits a more economical and easier way to prepare PBO than previous routes.
    Type: Grant
    Filed: April 10, 1992
    Date of Patent: December 14, 1993
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul M. Hergenrother, John W. Connell, Joseph G. Smith, Jr.
  • Patent number: 5200497
    Abstract: A process and polyimide product formed by the reaction of a bismaleimide with a bis(amidediene) wherein the bis(amidediene) is formed by reacting an excess of an acid chloride with 1,4-N,N'-diisoprenyl-2,3,5,6-tetramethyl benzene.
    Type: Grant
    Filed: August 16, 1990
    Date of Patent: April 6, 1993
    Assignee: The United States of America as represented by the Adminstrator, National Aeronautics and Space Administration
    Inventors: Joseph G. Smith, Jr., Raphael M. Ottenbrite