Patents by Inventor Joseph H. Schulman

Joseph H. Schulman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10369362
    Abstract: An apparatus and method is related to providing sensing functions that are similar to “human touch” when located in a prosthetic device such as a BION microstimulator that is implanted in a patient. The apparatus includes a power circuit, a communication circuit and a sensor circuit. The power circuit provides power to the communication circuit and the sensor circuit. The sensor cooperates with the communication circuit, which communicates to the brain. The sensor uses various techniques to detect changes in the environment for the surrounding tissue using criteria such as reflectivity, impedance, conductivity, return signal spectrum, return signal rate and return signal phase to name a few. For example, the impedance observed by the sensor changes when: the skin tissue is deformed around the sensor, or when the skin is surrounded by water. The sensory information is interpreted by the brain as an analog of touch or feel.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: August 6, 2019
    Assignee: The Alfred E. Mann Foundation for Scientific Research
    Inventors: Lawrence J. Karr, Joseph H. Schulman
  • Patent number: 10335089
    Abstract: Biocompatible stiffness enhanced pliable electrically conductive filaments configured for contact with living tissue and electrical communication with such tissue. The pliability of the filaments allows the distal end of the filaments to remain at the original site of penetration into the tissue despite the movement of the tissue relative to their surrounding environment. To temporarily stiffen the filaments, a soluble stiffness enhancing coating is disposed over the filaments. The coating may be in the form of a liquid which dries to a solid state after being applied to the filaments and renders the filaments sufficiently rigid such that under appropriate force, the filaments are capable of penetrating into dense tissue. Once in place, the stiffness enhancing coating dissolves due to contact with body fluids, the filaments, in the absence of such a coating, return to their initial pliability.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: July 2, 2019
    Assignee: The Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, David L. Hankin
  • Patent number: 9750428
    Abstract: Systems and method utilizing microelectronic devices for determining relative positions such as distances and/or angles between at least two points is described. The points may be locations of parts of the body such as the fingers on a person's hand. A first microelectronic device is adapted to emit magnetic signals and at least one second microelectronic device is adapted to receive the magnetic signals, wherein a controller is adapted to communicate with the first and second microelectronic devices. The second microelectronic device and/or the controller are adapted to determine a distance and angle between the first and the second microelectronic devices based on the strength of the magnetic signals received by the second microelectronic device.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: September 5, 2017
    Assignee: The Alfred E. Mann Foundation For Scientific Research
    Inventors: Eusebiu Matei, Lawrence J. Karr, Joseph H. Schulman
  • Patent number: 9622677
    Abstract: A brain implant device includes a housing containing communication and control electronics coupled to a conduit configured for monitoring signals from a brain's motor cortex and providing stimulation signals to the brain's sensory cortex. The brain implant device is capable of wireless communication with an external communication and control signal source by means of an antenna provided in the housing. The conduit is flexible and may contain upwards of 128 electrical conductors providing electrical connections between the device electronics and related sites on the motor and/or sensory cortex by means of a plurality of electrically conductive protuberances extending from the conduit and adapted for contact with such sites.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: April 18, 2017
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Howard H. Stover, John C. Gord, Charles L. Byers, Joseph H. Schulman, Guangqiang Jiang, Ross Davis
  • Patent number: 9480410
    Abstract: Methods for making biocompatible stiffness enhanced pliable electrically conductive filaments configured for contact with living tissue and electrical communication with such tissue. The pliability of a filament allows the distal end of the filament to remain at the original site of penetration into the tissue despite the movement of the tissue relative to its surrounding environment. To temporarily stiffen the filament, a soluble stiffness enhancing coating is disposed over the filament. The coating may be in the form of a liquid which dries to a solid state after being applied to the filament and renders the filament sufficiently rigid such that under appropriate force, the filament is capable of penetrating into dense tissue. Once in place the stiffness enhancing coating dissolves due to contact with body fluids, the filament, in the absence of such coating, returns to its initial pliability.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: November 1, 2016
    Inventors: Joseph H. Schulman, David L. Hankin
  • Patent number: 9387321
    Abstract: The present invention is a visual prosthesis for the restoration of sight in patients with lost or degraded visual function. The visual prosthesis includes an implantable portion which stimulates visual neural tissue according to stimulation patterns sent by a programmable video processing unit. The video processing unit controls stimulation patterns including programmable wave forms to provide monopolar, bipolar, and multipolar wave forms.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: July 12, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Greenberg, Joseph H Schulman
  • Publication number: 20150335891
    Abstract: The present invention is a visual prosthesis for the restoration of sight in patients with lost or degraded visual function. The visual prosthesis includes an implantable portion which stimulates visual neural tissue according to stimulation patterns sent by a programmable video processing unit. The video processing unit controls stimulation patterns including programmable wave forms to provide monopolar, bipolar, and multipolar wave forms.
    Type: Application
    Filed: June 2, 2015
    Publication date: November 26, 2015
    Inventors: Robert Greenberg, Joseph H. Schulman
  • Patent number: 9083312
    Abstract: An electronic filter circuit includes an electromechanical resonator that is mounted directly to the surface of a silicon integrated circuit, rather than being a surface mounted or leaded filter can on a circuit board. This filter circuit allows the integrated circuit electronic package to be significantly smaller than a conventional electromechanical resonator package. The electromechanical resonator may be protected during processing and during use with a protective cover that is made of a material such as titanium. The protective cover is attached to the integrated circuit chip.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: July 14, 2015
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Charles L. Byers, Joseph H. Schulman, Gary D. Schnittgrund
  • Patent number: 9044591
    Abstract: The present invention is a visual prosthesis for the restoration of sight in patients with lost or degraded visual function. The visual prosthesis includes a user interface which controls function of the visual prosthesis to optimize operation for each individual patient. The user interface controls functions such as brightness, contrast, magnification, frequency, pulse width, or amplitude. The user interface may also individually control points of neural stimulation.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: June 2, 2015
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Greenberg, Joseph H Schulman
  • Patent number: 8991680
    Abstract: The electrode array is a device for making electrical contacts with cellular tissue or organs. The electrode array includes an assembly of electrically conductive electrodes arising from a substrate where the electrodes are hermetically bonded to the substrate. A method of manufacture of an electrode array and associated circuitry is disclosed where the braze preform tab disappears during the braze bonding process and is completely drawn into the substrate feedthrough holes such that the braze perform tab is completely involved in the braze joint and is no longer connecting the adjacent electrodes.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: March 31, 2015
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Guangqiang Jiang, Charles L. Byers
  • Patent number: 8862235
    Abstract: A brain implant device includes a housing containing communication and control electronics coupled to a conduit configured for monitoring signals from a brain's motor cortex and providing stimulation signals to the brain's sensory cortex. The brain implant device is capable of wireless communication with an external communication and control signal source by means of an antenna provided in the housing. The conduit is flexible and may contain upwards of 128 electrical conductors providing electrical connections between the device electronics and related sites on the motor and/or sensory cortex by means of a plurality of electrically conductive protuberances extending from the conduit and adapted for contact with such sites.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: October 14, 2014
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Howard H. Stover, John C. Gord, Charles L. Byers, Joseph H. Schulman, Guangqiang Jiang, Ross Davis
  • Publication number: 20140213885
    Abstract: Systems and method utilizing microelectronic devices for determining relative positions such as distances and/or angles between at least two points is described. The points may be locations of parts of the body such as the fingers on a person's hand. A first microelectronic device is adapted to emit magnetic signals and at least one second microelectronic device is adapted to receive the magnetic signals, wherein a controller is adapted to communicate with the first and second microelectronic devices. The second microelectronic device and/or the controller are adapted to determine a distance and angle between the first and the second microelectronic devices based on the strength of the magnetic signals received by the second microelectronic device.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 31, 2014
    Applicant: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Eusebiu Matei, Lawrence J. Karr, Joseph H. Schulman
  • Publication number: 20140207252
    Abstract: An apparatus and method is related to providing sensing functions that are similar to “human touch” when located in a prosthetic device such as a BION microstimulator that is implanted in a patient. The apparatus includes a power circuit, a communication circuit and a sensor circuit. The power circuit provides power to the communication circuit and the sensor circuit. The sensor cooperates with the communication circuit, which communicates to the brain. The sensor uses various techniques to detect changes in the environment for the surrounding tissue using criteria such as reflectivity, impedance, conductivity, return signal spectrum, return signal rate and return signal phase to name a few. For example, the impedance observed by the sensor changes when: the skin tissue is deformed around the sensor, or when the skin is surrounded by water. The sensory information is interpreted by the brain as an analog of touch or feel.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 24, 2014
    Applicant: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: LAWRENCE J. KARR, JOSEPH H. SCHULMAN
  • Publication number: 20140194950
    Abstract: The present invention is a visual prosthesis for the restoration of sight in patients with lost or degraded visual function. The visual prosthesis includes a user interface which controls function of the visual prosthesis to optimize operation for each individual patient. The user interface controls functions such as brightness, contrast, magnification, frequency, pulse width, or amplitude. The user interface may also individually control points of neural stimulation.
    Type: Application
    Filed: January 2, 2014
    Publication date: July 10, 2014
    Inventors: Robert Greenberg, Joseph H. Schulman
  • Patent number: 8684009
    Abstract: Systems and method utilizing microelectronic devices for determining relative positions such as distances and/or angles between at least two points is described. The points may be locations of parts of the body such as the fingers on a person's hand. A first microelectronic device is adapted to emit magnetic signals and at least a second microelectronic device is adapted to receive the magnetic signals, wherein a controller is adapted to communicate with the first and second microelectronic devices. The second microelectronic device and/or the controller are adapted to determine a distance and angle between the first and the second microelectronic devices based on the strength of the magnetic signals received by the second microelectronic device.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: April 1, 2014
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Eusebiu Matei, Lawrence J. Karr, Joseph H. Schulman
  • Patent number: 8649868
    Abstract: The present invention is an implantable electronic device formed within a biocompatible hermetic package. Preferably the implantable electronic device is used for a visual prosthesis for the restoration of sight in patients with lost or degraded visual function. The package is formed from a thin film of hermetic biocompatible material to minimize the size of the implanted device.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: February 11, 2014
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Joseph H. Schulman
  • Patent number: 8632607
    Abstract: Permanent magnets or electromagnets or a combination of such magnets are provided to retain a prosthetic device on an extremity or limb, such as an amputated arm. The prosthesis utilizes the opposing forces, which are developed by virtue of like magnetic poles being in proximity to each other, to urge the prosthesis to remain attached to the extremity. The prosthesis is prevented from rotation by virtue of a centering force that is provided by an attachment magnet in the prosthesis being placed between two implanted magnets. A removable mounting ring is placed over the prosthesis to maintain it on the extremity.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: January 21, 2014
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers
  • Patent number: 8555894
    Abstract: A system for monitoring temperature in a body, the system comprising at least one implantable device, wherein the implantable device(s) is operable to sense temperature in the body and to generate status signals based on the sensed temperature in the body. The system further comprising a system control unit for wirelessly communicating with the implantable device(s), and the system control unit comprising a signal receiver for receiving the status signals, and also a programmable controller for producing notification signals based on the received status signals. A notification unit can alternatively communicate with the system control unit or the implantable device(s) for disclosing the sensed body temperature based on the notification signals.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: October 15, 2013
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, John C. Gord, James H. Wolfe
  • Patent number: 8442614
    Abstract: An embodiment of the invention includes a biocompatible stiffness enhanced pliable electrically conductive filament configured for contact with living tissue and electrical communication with such tissue. The pliability of the filament allows the distal end of the filament to remain at the original site of penetration into the tissue despite the movement of the tissue relative to its surrounding environment. To temporarily stiffen the filament, a soluble stiffness enhancing coating is disposed over the filament. The coating may be in the form of a liquid which dries to a solid state after being applied to the filament and renders the filament sufficiently rigid such that under appropriate force, the filament is capable of penetrating into dense tissue. Once in place the stiffness enhancing coating dissolves due to contact with body fluids, the filament, in the absence of such coating, returns to its initial pliability.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 14, 2013
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventor: Joseph H. Schulman
  • Patent number: 8428741
    Abstract: A method and apparatus for improving visual acuity when providing a visual image from a “high” resolution input device to a “low” resolution output device. The described invention is of particular use when the output device is an array of electrodes as part of a retinal prosthesis used to restore vision to a visually-impaired patient. In that various limitations may, within the foreseeable future, limit the density of such an electrode array (and thus the resolution of the output image), the present invention teaches techniques to assign processed pixel subsets of a higher resolution image to a single electrode. By varying the pixel subsets, e.g., by jittering, and/or altering the processing criteria, the perceived visual acuity may be further improved. Alternatively and additionally, such processing may be further extended to drive neighboring electrodes in combination to thus stimulate virtual electrode sites and thus further enhance visual acuity.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: April 23, 2013
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Richard P. Williamson, Joseph H. Schulman, Reza P. Rassool, Lee J. Mandell, Abraham N. Seidman