Patents by Inventor Joseph Hollmann

Joseph Hollmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125936
    Abstract: A system and method of LIDAR imaging to overcome scattering effects pulses a scene with light pulse sequences from a light source. Reflected light from the scene is measured for each light pulse to form a sequence of time-resolved signals. Time-resolved contrast is calculated for each location in a scene. A three-dimensional map or image of the scene is created from the time-resolved contrasts. The three-dimensional map is then utilized to affect operation of a vehicle.
    Type: Application
    Filed: December 27, 2023
    Publication date: April 18, 2024
    Inventor: Joseph HOLLMANN
  • Patent number: 11921238
    Abstract: A method of lidar imaging pulses a scene with laser pulse sequences from a laser light source. Reflected light from the scene is measured for each laser pulse to form a sequence of time resolved light signals. Adjoining time bins in the time resolved light signals are combined to form super time bins. A three dimensional image of the scene is created from distances determined based on maximum intensity super time bins. One or more objects are located within the image. For each object, the time resolved light signals are combined to form a single object time resolved light signal from which to determine distance to the object.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: March 5, 2024
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Joseph Hollmann, Zachary R. Hoffman
  • Patent number: 11874379
    Abstract: A system and method of LIDAR imaging to overcome scattering effects pulses a scene with light pulse sequences from a light source. Reflected light from the scene is measured for each light pulse to form a sequence of time-resolved signals. Time-resolved contrast is calculated for each location in a scene. A three-dimensional map or image of the scene is created from the time-resolved contrasts. The three-dimensional map is then utilized to affect operation of a vehicle.
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: January 16, 2024
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventor: Joseph Hollmann
  • Publication number: 20230075271
    Abstract: A system and method of LIDAR imaging to overcome scattering effects pulses a scene with light pulse sequences from a light source. Reflected light from the scene is measured for each light pulse to form a sequence of time-resolved signals. Time-resolved contrast is calculated for each location in a scene. A three-dimensional map or image of the scene is created from the time-resolved contrasts. The three-dimensional map is then utilized to affect operation of a vehicle.
    Type: Application
    Filed: October 25, 2022
    Publication date: March 9, 2023
    Inventor: Joseph HOLLMANN
  • Patent number: 11506790
    Abstract: A system and method of LIDAR imaging to overcome scattering effects pulses a scene with light pulse sequences from a light source. Reflected light from the scene is measured for each light pulse to form a sequence of time-resolved signals. Time-resolved contrast is calculated for each location in a scene. A three-dimensional map or image of the scene is created from the time-resolved contrasts. The three-dimensional map is then utilized to affect operation of a vehicle.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: November 22, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventor: Joseph Hollmann
  • Patent number: 10739445
    Abstract: A method of lidar processing pulses a scene with laser pulse sequences from a laser light source. Reflected light from the target scene passes through receiver optics and is defocused to cover a light sensing surface of a photo detector array. The photo detector array contains multiple photon detector elements connected in parallel where each photon detector element is configured to generate corresponding photon pulse output signals based on sensing photons in the received reflected light, and each photon detector element is characterized by a non-responsive dead time period immediately after sensing a photon. The photon pulse output signals are combined to form a common real time output signal, which is converted to a digital time resolved histogram. Multiple digital time resolved histograms produced in response to multiple light pulses directed at a scanning location are combined to form a composite time resolved histogram for the scanning location.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: August 11, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Joseph Hollmann, Zachary R. Hoffman
  • Publication number: 20190361098
    Abstract: A method of lidar processing pulses a scene with laser pulse sequences from a laser light source. Reflected light from the target scene passes through receiver optics and is defocused to cover a light sensing surface of a photo detector array. The photo detector array contains multiple photon detector elements connected in parallel where each photon detector element is configured to generate corresponding photon pulse output signals based on sensing photons in the received reflected light, and each photon detector element is characterized by a non-responsive dead time period immediately after sensing a photon. The photon pulse output signals are combined to form a common real time output signal, which is converted to a digital time resolved histogram. Multiple digital time resolved histograms produced in response to multiple light pulses directed at a scanning location are combined to form a composite time resolved histogram for the scanning location.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 28, 2019
    Inventors: Joseph Hollmann, Zachary R. Hoffman
  • Publication number: 20190353792
    Abstract: A method of lidar imaging pulses a scene with laser pulse sequences from a laser light source. Reflected light from the scene is measured for each laser pulse to form a sequence of time resolved light signals. Adjoining time bins in the time resolved light signals are combined to form super time bins. A three dimensional image of the scene is created from distances determined based on maximum intensity super time bins. One or more objects are located within the image. For each object, the time resolved light signals are combined to form a single object time resolved light signal from which to determine distance to the object.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 21, 2019
    Inventors: Joseph Hollmann, Zachary R. Hoffman
  • Publication number: 20190257928
    Abstract: A system and method of LIDAR imaging to overcome scattering effects pulses a scene with light pulse sequences from a light source. Reflected light from the scene is measured for each light pulse to form a sequence of time-resolved signals. Time-resolved contrast is calculated for each location in a scene. A three-dimensional map or image of the scene is created from the time-resolved contrasts. The three-dimensional map is then utilized to affect operation of a vehicle.
    Type: Application
    Filed: February 20, 2019
    Publication date: August 22, 2019
    Inventor: Joseph Hollmann
  • Publication number: 20190083048
    Abstract: A system is described for multi-frequency ultrasonically-encoded tomography of a target object. One or more probe inputs generate probe input signals to the target object. An ultrasound transducer array is placed on the outer surface of the target object and has multiple ultrasound transducers each generating a different time-dependent waveform to form a plurality of ultrasound input signals to a target probe volume within the target object. One or more sensors sense tomography output signals from the target probe volume, wherein the tomography output signals contain an interaction component generated by interaction of the probe input signals with the ultrasound input signals. A tomography analysis of the tomography output signals is performed to create a three-dimensional object map representing structural and/or functional characteristics of the target object.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 21, 2019
    Inventors: Steven J. Byrnes, Joseph Hollmann, Daniel K. Freeman
  • Publication number: 20190082964
    Abstract: A system is described for multi-frequency ultrasonically-encoded optical tomography of target tissue. A light source generates light input signals to the target tissue. An ultrasound transducer array has ultrasound transducers each generating a different time-dependent waveform to form a plurality of ultrasound input signals to an imaging volume within the target tissue. An optical sensor senses scattered light signals from the imaging volume, wherein the scattered light signals include light input signals modulated by acousto-optic interactions with the ultrasound input signals. Spectral analysis of the scattered light signals is performed to create a three-dimensional image map representing biomarker characteristics of the target tissue.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 21, 2019
    Inventors: Steven J. Byrnes, Joseph Hollmann
  • Publication number: 20190083059
    Abstract: A system and corresponding method are described for multi-frequency ultrasonically-encoded tomography of a target object. One or more probe inputs generate probe input signals to the target object. An ultrasound transducer array is placed on the outer surface of the target object and has multiple ultrasound transducers each operating at a different ultrasound frequency to generate ultrasound input signals to a target probe volume within the target object. A photorefractive crystal mixes scattered light output signals from the target probe volume with an optical reference beam input to produce optical tomography output signals including ultrasound sum frequencies components. A photodetector senses the optical tomography output signals from the photorefractive crystal. A tomography analysis of the tomography output signals including the ultrasound sum frequencies components is performed to create a three-dimensional object map representing structural and/or functional characteristics of the target object.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 21, 2019
    Inventors: Steven J. Byrnes, Joseph Hollmann
  • Publication number: 20190083049
    Abstract: A system and corresponding method are described for multi-frequency ultrasonically-encoded tomography of a target object. One or more probe inputs generate probe input signals to the target object. An ultrasound transducer array is placed on the outer surface of the target object and has multiple ultrasound transducers each generating a different time-dependent waveform to form a plurality of ultrasound input signals to a target probe volume within the target object. A photorefractive crystal mixes scattered light output signals from the target probe volume with an optical reference beam input to produce optical tomography output signals including ultrasound sum frequencies components. A photodetector senses the optical tomography output signals from the photorefractive crystal.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 21, 2019
    Inventors: Steven J. Byrnes, Joseph Hollmann