Patents by Inventor Joseph J. Brown

Joseph J. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7898079
    Abstract: A heat-conducting medium for placement between a heat source and heat sink to facilitate transfer of heat from the source to the sink is provided. The heat-conducting medium can include a flexible member made from an array of interweaving carbon nanotubes. The heat-conducting medium may also include an upper surface against which a heat source may be placed, an opposing lower surface and edges about the member designed for coupling to a heat sink toward which heat from the heat source can be directed. The heat-conducting medium may also include a pad placed on the upper surface to provide structural support to the member. A method for manufacturing the heat-conducting medium is also provided.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: March 1, 2011
    Assignee: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Joseph J. Brown
  • Publication number: 20100324656
    Abstract: A method for manufacturing a carbon composite is provided. The method includes providing a carbon-containing resin material to which an appropriate concentration of catalyst particles may be added. Thereafter, the catalyzed resin may be subject to a high temperature range, at which point carbon in the resin to begins to couple to the catalyst particles. Continual exposure to high temperature leads to additional attachment of carbon to existing carbon on the particles. Subsequently growth, within the resin material, of an array of carbon nanotubes occurs, as well as the formation of the composite material.
    Type: Application
    Filed: July 22, 2010
    Publication date: December 23, 2010
    Inventors: David S. Lashmore, Joseph J. Brown
  • Publication number: 20100104849
    Abstract: A method for manufacturing a carbon composite is provided. The method includes providing a carbon-containing resin material to which an appropriate concentration of catalyst particles may be added. Thereafter, the catalyzed resin may be subject to a high temperature range, at which point carbon in the resin to begins to couple to the catalyst particles. Continual exposure to high temperature leads to additional attachment of carbon to existing carbon on the particles. Subsequently growth, within the resin material, of an array of carbon nanotubes occurs, as well as the formation of the composite material.
    Type: Application
    Filed: May 2, 2006
    Publication date: April 29, 2010
    Inventors: David S. Lashmore, Joseph J. Brown
  • Publication number: 20100099319
    Abstract: A system for synthesizing nanostructures using chemical vapor deposition (CVD) is provided. The system includes a housing, a porous substrate within the housing, and on a downstream surface of the substrate, a plurality of catalyst particles from which nanostructures can be synthesized upon interaction with a reaction gas moving through the porous substrate. Electrodes may be provided to generate an electric field to support the nanostructures during growth. A method for synthesizing extended length nanostructures is also provided.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 22, 2010
    Inventors: David Lashmore, Joseph J. Brown, Robert C. Dean, Peter L. Antoinette
  • Patent number: 7611579
    Abstract: A system for synthesizing nanostructures using chemical vapor deposition (CVD) is provided. The system includes a housing, a porous substrate within the housing, and on a downstream surface of the substrate, a plurality of catalyst particles from which nanostructures can be synthesized upon interaction with a reaction gas moving through the porous substrate. Electrodes may be provided to generate an electric field to support the nanostructures during growth. A method for synthesizing extended length nanostructures is also provided. The nanostructures are useful as heat conductors, heat sinks, windings for electric motors, solenoid, transformers, for making fabric, protective armor, as well as other applications.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: November 3, 2009
    Assignee: Nanocomp Technologies, Inc.
    Inventors: David Lashmore, Joseph J. Brown, Robert C. Dean, Jr., Peter L. Antoinette
  • Publication number: 20090215344
    Abstract: A system that receives nanomaterials, forms nanofibrous materials therefrom, and collects these nanofibrous materials for subsequent applications. The system is coupled to a chamber that generates nanomaterials, typically carbon nanotubes produced from chemical vapor deposition, and includes a mechanism for spinning the nanotubes into yarns or tows. Alternatively, the system includes a mechanism for forming non-woven sheets from the nanotubes. The system also includes components for collecting the formed nanofibrous materials. Methods for forming and collecting the nanofibrous materials are also provided.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 27, 2009
    Inventors: David S. Lashmore, Joseph J. Brown, Jared K. Chaffee, Bruce Resnicoff, Peter Antoinette