Patents by Inventor Joseph J. DeFrank

Joseph J. DeFrank has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8357335
    Abstract: An assay for screening potential hydrolysis enhancing agents capable of facilitating the hydrolysis of a substantially water insoluble halogenated compound such as mustard gas (HD) in an aqueous reaction mixture is disclosed. The assay includes at least one chamber adapted for receiving and retaining the substantially water insoluble mustard gas compound and a potential hydrolysis agent in an aqueous reaction mixture, and a pH indicating agent adapted to produce a visible color change corresponding to the amount of the substantially water insoluble mustard gas compound hydrolyzed in the aqueous reaction mixture wherein the rate of hydrolysis can be established by measuring the change in the detectable signal over time.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: January 22, 2013
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Steven P. Harvey, Joseph J. DeFrank
  • Patent number: 7723558
    Abstract: The present invention relates to a near-universal non-corrosive, non-toxic, environmentally safe and user friendly decontaminant capable of detoxifying organophosphorus (OP)-based G-type, V-type neurotoxic chemical warfare, sulfur-mustard, and related OP based hazardous industrial materials in a dry powder form. The decontaminant contains OPH enzyme, OPAA enzyme, DFPase enzyme, dehalogenase enzyme, quaternary ammonium salt, a pH control reagent, a fire-fighting agent, and a foaming agent. The decontaminant is mixed with available water for use.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: May 25, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Tu-Chen Cheng, Joseph J. DeFrank, Steven P. Harvey, Vipin K. Rastogi
  • Patent number: 7704724
    Abstract: Compositions and methods for catalytic buffering of enzymatic decontamination reactions are provided. Enzymatic decontamination of organophosphorus or organohalogen compounds generates acidic reaction products that precipitously reduce the pH of the medium, thus impairing activity of the decontaminating enzymes. Catalytic buffering, that is, the use of an enzyme to produce ions from a substrate to modulate pH, can provide effective pH control. The compositions provided here include urease enzymes with mutations in the alpha subunit of the urease holoenzyme. These mutant ureases maintain urease activity in the presence of fluoride ions, which are organophosphorus and organohalogen hydrolysis products that otherwise inhibit urease activity. The fluoride-resistant ureases act as effective catalytic buffers during organofluorophosphorus hydrolysis reactions. Methods for using the fluoride-resistant ureases in enzymatic decontamination are also provided.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: April 27, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ilona J. Fry, Joseph J. DeFrank
  • Patent number: 7229819
    Abstract: The present invention relates to a near-universal non-corrosive, non-toxic, environmentally safe and user friendly decontaminant capable of detoxifying organophosphorus (OP)-based G-type, V-type neurotoxic chemical warfare, sulfur-mustard, and related OP based hazardous industrial materials in a dry powder form. The decontaminant contains OPH enzyme, OPAA enzyme, DFPase enzyme, dehalogenase enzyme, quaternary ammonium salt, a pH control reagent, a fire-fighting agent, and a foaming agent. The decontaminant is mixed with available water for use.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: June 12, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Tu-Chen Cheng, Joseph J. DeFrank, Steven P. Harvey, Vipin K. Rastogi
  • Patent number: 7001758
    Abstract: A biodegradation process for the organophosphonate product of Sarin (O-isopropyl methylphosphonofluoridate) hydrolysis, i.e., isopropylmethylphosphonate (IMPA). This process provides a feasible biodegradation demilitarization alternative to Sarin incineration. Public opposition of nerve agent incineration is widespread, and alternative methods are sought to help the U.S. Army meet the 2007 demilitarization deadline imposed by the Chemical Weapons Convention. This process uses a two-step approach to IMPA biodegradation. In the first step, a concentrated IMPA solution is used as the sole nutritional carbon and phosphorus source for microbial cultures. The second step involves diluting the culture and adding an inexpensive carbon source to encourage bacterial phosphate assimilation. The biodegradation typically involves a consortium of microorganisms comprising Methylobacterium radiotolerans GB21, Agrobacterium tumefaciens GB2GA, Klebsiella oxytoca GB2CS, GB272, Aureobacterium sp.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: February 21, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ilona J. Fry, Joseph J. DeFrank, James P. Earley
  • Patent number: 6599733
    Abstract: A biodegradation process for the organophosphonate product of Sarin (O-isopropyl methylphosphonofluoridate) hydrolysis, i.e., isopropylmethylphosphonate (IMPA). This process provides a feasible biodegradation demilitarization alternative to Sarin incineration. Public opposition of nerve agent incineration is widespread, and alternative methods are sought to help the U.S. Army meet the 2007 demilitarization deadline imposed by the Chemical Weapons Convention. This process uses a two-step approach to IMPA biodegradation. In the first step, a concentrated IMPA solution is used as the sole nutritional carbon and phosphorus source for microbial cultures. The second step involves diluting the culture and adding an inexpensive carbon source to encourage bacterial phosphate assimilation. The biodegradation typically involves a consortium of microorganisms comprising Methylobacterium radiotolerans GB21, Agrobacterium tumefaciens GB2GA, Klebsiella oxytoca GB2CS, GB272, Aureobacterium sp.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: July 29, 2003
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ilona J. Fry, Joseph J. DeFrank, James P. Earley
  • Patent number: 6469145
    Abstract: Novel and improved processes for isolating organophosphorus hydrolase enzyme from an aqueous solution and obtaining substantially purified enzyme at high yield are provided, as well as compositions, including storage stable lyophilyzed organophosphorus hydrolase enzyme compositions, that are prepared by the provided methods. The organophosphorus hydrolase enzyme is purified by contacting an aqueous solution of cell free bacterial proteins with a strong cation exchange resin, the aqueous solution comprising soluble organophosphorus hydrolase enzyme, washing the strong cation exchange resin with a washing buffer to remove unbound proteins from the strong cation exchange resin, eluting proteins that remain bound to the strong cation exchange resin by washing the resin with an eluting buffer comprising salt in a concentration that starts at about zero and is raised during the eluting process to about 0.5M, and detecting and collecting eluate comprising a protein having organophosphorus hydrolase enzyme activity.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: October 22, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Vipin K. Rastogi, Tu-Chen Cheng, Joseph J. DeFrank
  • Patent number: 6080566
    Abstract: Compositions and methods are provided for enzymatic detoxification of organophosphorus compounds. The compositions contain a recombinant enzyme expressed by a cloned gene encoding an organophosphorus acid anhydrolase (OPAA-2) from the Alteromonas sp. bacteria, strain JD6.5. These compositions may be prepared as a dry powder and reconstituted with various water sources when needed. The methods involve application of compositions of recombinant OPAA-2 to surfaces or substances contaminated with organophosphorus compounds under conditions which maximize activity and stability of the enzyme.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: June 27, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Tu-Chen Cheng, Joseph J. DeFrank
  • Patent number: 6054310
    Abstract: A process for biodegradation of an amine compound by contacting the amine mpound with a consortium of microorganisms effective for consuming carbon and nitrogen components of the amine compound under aerobic conditions, wherein the enzymatically degraded the amine compound forms an ammonia residue, nitrifying the ammonia residue under aerobic conditions, wherein the ammonia residue forms nitrite and nitrate residues and denitrifying the compound with the addition of a supplementary carbon source under anoxic conditions. The amine compound may be DS2 or similar amine structures. The microorganisms include Bacillus circulans, the genera Nitrosomonas, and the genera Nitrobacter. The process is a continuous-fed process in a bioreactor. A composition of microorganisms comprising Bacillus circulans, the genera Nitrosomonas, the genera Nitrobacter, and facultative heterotrophic denitrifiers effective to degrade DS2 also is disclosed.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: April 25, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Michael H. Kim, Joseph J. DeFrank
  • Patent number: 5928927
    Abstract: Compositions and methods are provided for enzymatic detoxification of organophosphorus compounds. The compositions contain a recombinant enzyme expressed by a cloned gene encoding an organophosphorus acid anhydrolase (OPAA-2) from the Alteromonas sp. bacteria, strain JD6.5. These compositions may be prepared as a dry powder and reconstituted with various water sources when needed. The methods involve application of compositions of recombinant OPAA-2 to surfaces or substances contaminated with organophosphorus compounds under conditions which maximize activity and stability of the enzyme.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: July 27, 1999
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Tu-Chen Cheng, Joseph J. DeFrank