Patents by Inventor Joseph J. Hartvigsen

Joseph J. Hartvigsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140134067
    Abstract: An apparatus includes a heat transfer structure configured to be disposed at least partially within an enclosure of a fixed bed reactor and operable to transfer heat from a heat source to a heat sink. The heat transfer structure includes a plurality of fins each fin including a first end and a second end, the first end contacting an inner surface of the enclosure of the fixed bed reactor, the second end at least partially enclosed within the enclosure of the fixed bed reactor. A path of at least one of the plurality of fins comprises the shortest possible length between the first end of the at least one of the plurality of fins and the second end of the at least one of the plurality of fins.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: Ceramatec, Inc.
    Inventor: Joseph J. Hartvigsen
  • Patent number: 8618436
    Abstract: A method and apparatus for oxidizing a combustible material. The method includes introducing a volume of the combustible material into a plasma zone of a gliding electric arc oxidation system. The method also includes introducing a volume of oxidizer into the plasma zone of the gliding electric arc oxidation system. The volume of oxidizer includes a stoichiometrically excessive amount of oxygen. The method also includes generating an electrical discharge between electrodes within the plasma zone of the gliding electric arc oxidation system to oxidize the combustible material.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: December 31, 2013
    Assignee: Ceramatec, Inc.
    Inventors: Joseph J. Hartvigsen, Singaravelu Elangovan, Michele Hollist, Piotr Czernichowski
  • Publication number: 20130277355
    Abstract: A method for oxidizing a combustible material. The method includes introducing a volume of the combustible material into a plasma zone of a gliding electric arc oxidation system. The method also includes introducing a volume of oxidizer into the plasma zone of the gliding electric arc oxidation system. The volume of oxidizer includes a stoichiometrically excessive amount of oxygen. The method also includes generating an electrical discharge between electrodes within the plasma zone of the gliding electric arc oxidation system to oxidize the combustible material.
    Type: Application
    Filed: June 6, 2013
    Publication date: October 24, 2013
    Inventors: Joseph J. Hartvigsen, Elangovan, Michele Hollist, Piotr Czernichowski
  • Patent number: 8460409
    Abstract: A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: June 11, 2013
    Assignee: Ceramatec, Inc.
    Inventors: Joseph J. Hartvigsen, S. Elangovan, Piotr Czernichowski, Michele Hollist
  • Patent number: 8354011
    Abstract: An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A?yBO(3-?), wherein 0<x<1, 0?y?0.5, and 0.8?z?1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 15, 2013
    Assignee: Ceramatec, Inc.
    Inventors: S. Elangovan, Joseph J. Hartvigsen, Feng Zhao
  • Patent number: 8350190
    Abstract: A ceramic electrode for a gliding electric arc system. The ceramic electrode includes a ceramic fin defining a spine, a heel, and a tip. A discharge edge of the ceramic fin defines a diverging profile approximately from the heel of the ceramic fin to the tip of the ceramic fin. A mounting surface coupled to the ceramic fin facilitates mounting the ceramic fin within the gliding electric arc system. One or more ceramic electrodes may be used in the gliding electric arc system or other systems which at least partially oxidize a combustible material.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: January 8, 2013
    Assignee: Ceramatec, Inc.
    Inventors: Joseph J. Hartvigsen, Michele Hollist, S. Elangovan, Piotr Czernichowski, Merrill Wilson
  • Publication number: 20120267996
    Abstract: A ceramic electrode for a gliding electric arc system. The ceramic electrode includes a ceramic fin defining a spine, a heel, and a tip. A discharge edge of the ceramic fin defines a diverging profile approximately from the heel of the ceramic fin to the tip of the ceramic fin. A mounting surface coupled to the ceramic fin facilitates mounting the ceramic fin within the gliding electric arc system. One or more ceramic electrodes may be used in the gliding electric arc system or other systems which at least partially oxidize a combustible material.
    Type: Application
    Filed: February 22, 2008
    Publication date: October 25, 2012
    Inventors: Joseph J. Hartvigsen, Michele Hollist, S. Elangovan, Piotr Czernichowski, Merrill Wilson
  • Patent number: 8257563
    Abstract: An apparatus to produce high purity hydrogen and electricity is disclosed in one embodiment of the invention as including a fuel cell configured to convert the chemical energy of a fuel to electricity and heat. An electrolyzer cell is placed in electrical and thermal communication with the fuel cell and is configured to electrolyze an oxygen-containing compound, such as steam or carbon dioxide, using the electricity and heat generated by the fuel cell. In selected embodiments, the fuel cell and electrolyzer cell are physically integrated into a single electrochemical cell stack.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 4, 2012
    Assignee: Ceramatec, Inc.
    Inventor: Joseph J. Hartvigsen
  • Publication number: 20120118862
    Abstract: A method and apparatus for oxidizing a combustible material. The method includes introducing a volume of the combustible material into a plasma zone of a gliding electric arc oxidation system. The method also includes introducing a volume of oxidizer into the plasma zone of the gliding electric arc oxidation system. The volume of oxidizer includes a stoichiometrically excessive amount of oxygen. The method also includes generating an electrical discharge between electrodes within the plasma zone of the gliding electric arc oxidation system to oxidize the combustible material.
    Type: Application
    Filed: July 12, 2007
    Publication date: May 17, 2012
    Inventors: Joseph J. Hartvigsen, S. Elangovan
  • Patent number: 8153855
    Abstract: The object is to rapidly clean-up an off-gas generated by blasting in a pressure vessel to such a level as to permit the exhaust of the off-gas. An object to be blasted is blasted in a pressure vessel to generate an off-gas, which is introduced into a combustion furnace to burning a combustible component contained in the off-gas. The off-gas after the burning in a reservoir section is stored in the reservoir section, and exhausted out of the reservoir section if a component contained in the off-gas complies a predetermined emission requirement, otherwise returned to at least one of the pressure vessel and the combustion furnace to be re-treated if the component does not comply the emission requirement.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: April 10, 2012
    Assignees: Kobe Steel, Ltd., Ceramatec, Inc.
    Inventors: Kiyoshi Asahina, Masato Katayama, Ryusuke Kitamura, Joseph J. Hartvigsen, Singaravelu Elangovan
  • Publication number: 20120048730
    Abstract: A method is provided for synthesizing synthesis gas from carbon dioxide obtained from atmospheric air or other available carbon dioxide source and water using a sodium-conducting electrochemical cell. Synthesis gas is also produced by the coelectrolysis of carbon dioxide and steam in a solid oxide fuel cell or solid oxide electrolytic cell. The synthesis gas produced may then be further processed and eventually converted into a liquid fuel suitable for transportation or other applications.
    Type: Application
    Filed: November 1, 2011
    Publication date: March 1, 2012
    Inventors: Joseph J. Hartvigsen, Ashok V. Joshi, S. Elangovan, Shekar Balagopal, John Howard Gordon, Michele Hollist
  • Publication number: 20120043219
    Abstract: A process is provided for synthesizing synthesis gas from carbon dioxide obtained from atmospheric air or other available carbon dioxide source and water using a sodium-conducting electrochemical cell. Synthesis gas is also produced by the coelectrolysis of carbon dioxide and steam in a solid oxide fuel cell or solid oxide electrolytic cell. The synthesis gas produced may then be further processed and eventually converted into a liquid fuel suitable for transportation or other applications.
    Type: Application
    Filed: November 1, 2011
    Publication date: February 23, 2012
    Inventors: Joseph J. Hartvigsen, Ashok V. Joshi, S. Elangovan, Shekar Balagopal, John Howard Gordon, Michele Hollist
  • Patent number: 8075746
    Abstract: A method is provided for synthesizing synthesis gas from carbon dioxide obtained from atmospheric air or other available carbon dioxide source and water using a sodium-conducting electrochemical cell. Synthesis gas is also produced by the coelectrolysis of carbon dioxide and steam in a solid oxide fuel cell or solid oxide electrolytic cell. The synthesis gas produced may then be further processed and eventually converted into a liquid fuel suitable for transportation or other applications.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: December 13, 2011
    Assignee: Ceramatec, Inc.
    Inventors: Joseph J. Hartvigsen, Ashok V. Joshi, S. Elangovan, Shekar Balagopal, John Howard Gordon, Michele Hollist
  • Publication number: 20110206566
    Abstract: Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.
    Type: Application
    Filed: April 19, 2011
    Publication date: August 25, 2011
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Carl M. Stoots, James E. O'Brien, James S. Herring, Paul A. Lessing, Grant L. Hawkes, Joseph J. Hartvigsen
  • Patent number: 7976686
    Abstract: An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A?yBO(3-?), wherein 0?x?0.5, 0?y?0.5, and 0.8?z?1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: July 12, 2011
    Assignee: Ceramatec, Inc.
    Inventors: Singaravelu Elangovan, Joseph J. Hartvigsen
  • Patent number: 7951283
    Abstract: Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: May 31, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Carl M. Stoots, James E. O'Brien, James Stephen Herring, Paul A. Lessing, Grant L. Hawkes, Joseph J. Hartvigsen
  • Publication number: 20110062017
    Abstract: An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A?yBO(3-?), wherein 0<x<1, 0?y?0.5, and 0.8 ?z?1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Inventors: S. Elangovan, Joseph J. Hartvigsen
  • Publication number: 20100279194
    Abstract: A solid oxide fuel cell (SOFC) for use in generating electricity while tolerating sulfur content in a fuel input stream. The solid oxide fuel cell includes an electrolyte, a cathode, and a sulfur tolerant anode. The cathode is disposed on a first side of the electrolyte. The sulfur tolerant anode is disposed on a second side of the electrolyte opposite the cathode. The sulfur tolerant anode includes a composition of nickel, copper, and ceria to exhibit a substantially stable operating voltage at a constant current density in the presence of the sulfur content within the fuel input stream. The solid oxide fuel cell is useful within a SOFC stack to generate electricity from reformate which includes synthesis gas (syngas) and sulfur content. The solid oxide fuel cell is also useful within a SOFC stack to generate electricity from unreformed hydrocarbon fuel.
    Type: Application
    Filed: September 29, 2008
    Publication date: November 4, 2010
    Inventors: S. Elangovan, Joseph J. Hartvigsen
  • Publication number: 20100003556
    Abstract: A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
    Type: Application
    Filed: August 7, 2009
    Publication date: January 7, 2010
    Inventors: Joseph J. Hartvigsen, S. Elangovan, Piotr Czemichowski, Michele Hollist
  • Publication number: 20090181274
    Abstract: An electrochemical cell is disclosed in one embodiment of the invention as including an oxygen electrode and a solid oxide electrolyte coupled to the oxygen electrode to transport oxygen ions. A hydrogen electrode is coupled to the solid oxide electrolyte and contains nickel combined with a material tending to reduce the reactivity of the nickel with the solid oxide electrolyte. In selected embodiments, the solid oxide electrolyte is lanthanum gallate. Similarly, the material combined with the nickel may be an oxide such as magnesium oxide.
    Type: Application
    Filed: December 11, 2007
    Publication date: July 16, 2009
    Inventors: S. Elangovan, Joseph J. Hartvigsen