Patents by Inventor JOSEPH JIANG

JOSEPH JIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139493
    Abstract: Provided herein is a disinfecting device including a container containing a chlorhexidine-based solution having a chlorhexidine concentration of from 0.2-2.0% wt/vol. Provided also is a medical connector disinfected with the disinfecting device. A method of disinfecting a medical connector using the disinfecting device is also disclosed.
    Type: Application
    Filed: November 2, 2022
    Publication date: May 2, 2024
    Inventors: Kevin M. Ryan, Andrew Woodbridge Van Cott, Richard Bradley Timmers, Shoshana San Solo, Shishir Prasad, Narasinha C. Parasnis, Anurag Mathur, Chang Jiang, Kelsey Ann Graves, Joseph J. Dajcs, Qin Chen
  • Patent number: 11963929
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: April 23, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Connor Thomas O'Malley, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Christy Lynn Chapman, John Stephen Peanasky, Shivani Rao Polasani, James Ernest Webb, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Steven Edward DeMartino, Robert Anthony Schaut, Adam Robert Sarafian
  • Patent number: 11963928
    Abstract: Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: April 23, 2024
    Assignee: CORNING INCORPORATED
    Inventors: James Ernest Webb, Sinue Gomez-Mower, Weirong Jiang, Joseph Michael Matusick, Christie Leigh McCarthy, Connor Thomas O'Malley, John Stephen Peanasky, Shivani Rao Polasani, Steven Edward DeMartino, Michael Clement Ruotolo, Jr., Bryan James Musk, Jared Seaman Aaldenberg, Eric Lewis Allington, Douglas Miles Noni, Jr., Amber Leigh Tremper, Kristen Dae Waight, Kevin Patrick McNelis, Patrick Joseph Cimo, Christy Lynn Chapman, Robert Anthony Schaut, Adam Robert Sarafian
  • Publication number: 20240129090
    Abstract: Aspects of the present disclosure provide a wireless device that communicates with another wireless device utilizing self-contained subframes. The wireless device communicates with a scheduling entity utilizing a plurality of self-contained subframes that include a first subframe and a second subframe. Each of the self-contained subframes includes an uplink (UL) portion and a downlink (DL) portion. The wireless device further receives DL control information from the scheduling entity in the DL portion of the first subframe, and transmits UL data that includes a plurality of reference signal bursts to the scheduling entity in the UL portion of the first subframe. The plurality of reference signal bursts are uniformly spaced in at least a portion of the UL portion of the first subframe.
    Type: Application
    Filed: October 25, 2023
    Publication date: April 18, 2024
    Inventors: Alexandros MANOLAKOS, Jing JIANG, June NAMGOONG, Tao LUO, Joseph Binamira SORIAGA, Tingfang JI
  • Patent number: 11950241
    Abstract: Aspects of the present disclosure provide a self-contained subframe structure for time division duplex (TDD) carriers. Information transmitted on a TDD carrier may be grouped into subframes, and each subframe can provide communications in both directions (e.g., uplink and downlink) to enable such communications without needing further information in another subframe. In one aspect of the disclosure, a single subframe may include scheduling information, data transmission corresponding to the scheduling information, and acknowledgment packets corresponding to the data transmission. Furthermore, the subframe may additionally include a header and/or a trailer to provide certain bi-directional communications functions.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: April 2, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Krishna Kiran Mukkavilli, Tingfang Ji, Naga Bhushan, Joseph Binamira Soriaga, Peter Gaal, John Edward Smee, Jing Jiang
  • Patent number: 11924826
    Abstract: Certain aspects relate to methods and apparatus for a flexible transmission unit and acknowledgement feedback timeline for low-latency communication. As described herein, a UE may receive, within a subframe a first portion of a downlink control region scheduling at least a first data unit, wherein the subframe comprises at least two TTIs and wherein the subframe comprises the downlink control region, a data region, and an uplink control region, receive the first data unit in a first TTI of the data region, receive a second data unit in a second TTI of the data region, and separately acknowledge receipt of the first and second data units. According to aspects, the acknowledgment for the first data unit may occur in the same subframe as the transmission of the first data unit. A BS may perform corresponding operations.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: March 5, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Jing Jiang, Tao Luo, Tingfang Ji, Peter Pui Lok Ang, Joseph Binamira Soriaga, Krishna Kiran Mukkavilli
  • Patent number: 11916826
    Abstract: Systems and techniques are disclosed to enhance the efficiency of available bandwidth between UEs and base stations. A UE transmits a sounding reference signal (SRS) to the base station. The base station characterizes the uplink channel based on the SRS received and, using reciprocity, applies the channel characterization for the downlink channel. As part of applying the channel information, the base station forms the beam to the UE based on the uplink channel information obtained from the SRS. The UE may include an array of antennas, each UE transmitting a different SRS that the base station receives and uses to characterize the downlink. Multiple UEs (or a single UE with multiple antennas) transmit SRS at the same time and frequency allocation (non-orthogonal), but with each sending its own unique SRS. Further, multiple UEs (or a single UE with multiple antennas) may send their SRS at unique time/frequency allocations (orthogonal).
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: February 27, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Joseph Binamira Soriaga, Jing Jiang, Krishna Kiran Mukkavilli, Pavan Kumar Vitthaladevuni, Naga Bhushan, Tingfang Ji, John Edward Smee
  • Patent number: 9811174
    Abstract: Interfacing application programs and motion sensors of a device. In one aspect, a high-level command is received from an application program running on a motion sensing device, where the application program implements one of multiple different types of applications available for use on the device. The high-level command requests high-level information derived from the output of motion sensors of the device that include rotational motion sensors and linear motion sensors. The command is translated to cause low-level processing of motion sensor data output by the motion sensors, the low-level processing following requirements of the type of application and determining the high-level information in response to the command. The application program is ignorant of the low-level processing, and the high-level information is provided to the application program.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: November 7, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Steven S. Nasiri, Joseph Jiang, David Sachs
  • Patent number: 9703397
    Abstract: Described herein is an intelligent remote controlling device (e.g. a mobile phone). The device can include a six-axis motion sensor to accurately track three dimensional hand motions. For example, the sensors can include a three-axis accelerometer and a three-axis gyroscope. The remote control device can also include a processing unit integrated with the motion sensors in a single module. The processing unit can convert data regarding the hand motion to data regarding a cursor motion for a cursor that will be displayed on a screen of an electronic device. The processing unit can be integrated with the motion sensors in a single module (e.g. an integrated circuit chip (IC)). The processing unit can include at least two modes of functionality corresponding to different types of hand motion: a one to one mode where the cursor directly tracks the hand motion and a non-linear mode that filters data from the motion sensors to eliminate hand jitter.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: July 11, 2017
    Assignee: InvenSense, Inc.
    Inventors: Steve Nasiri, Joseph Jiang, Shang-Hung Lin, Yuan Zheng
  • Patent number: 9342154
    Abstract: Interfacing application programs and motion sensors of a device. In one aspect, a high-level command is received from an application program running on a motion sensing device, where the application program implements one of multiple different types of applications available for use on the device. The high-level command requests high-level information derived from the output of motion sensors of the device that include rotational motion sensors and linear motion sensors. The command is translated to cause low-level processing of motion sensor data output by the motion sensors, the low-level processing following requirements of the type of application and determining the high-level information in response to the command. The application program is ignorant of the low-level processing, and the high-level information is provided to the application program.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: May 17, 2016
    Assignee: InvenSense, Inc.
    Inventors: Steven S. Nasiri, Joseph Jiang, David Sachs
  • Publication number: 20160011676
    Abstract: Described herein is an intelligent remote controlling device (e.g. a mobile phone). The device can include a six-axis motion sensor to accurately track three dimensional hand motions. For example, the sensors can include a three-axis accelerometer and a three-axis gyroscope. The remote control device can also include a processing unit integrated with the motion sensors in a single module. The processing unit can convert data regarding the hand motion to data regarding a cursor motion for a cursor that will be displayed on a screen of an electronic device. The processing unit can be integrated with the motion sensors in a single module (e.g. an integrated circuit chip (IC)). The processing unit can include at least two modes of functionality corresponding to different types of hand motion: a one to one mode where the cursor directly tracks the hand motion and a non-linear mode that filters data from the motion sensors to eliminate hand jitter.
    Type: Application
    Filed: April 9, 2015
    Publication date: January 14, 2016
    Inventors: Steve Nasiri, Joseph Jiang, Shang-Hung Lin, Yuan Zheng
  • Publication number: 20150234481
    Abstract: Interfacing application programs and motion sensors of a device. In one aspect, a high-level command is received from an application program running on a motion sensing device, where the application program implements one of multiple different types of applications available for use on the device. The high-level command requests high-level information derived from the output of motion sensors of the device that include rotational motion sensors and linear motion sensors. The command is translated to cause low-level processing of motion sensor data output by the motion sensors, the low-level processing following requirements of the type of application and determining the high-level information in response to the command. The application program is ignorant of the low-level processing, and the high-level information is provided to the application program.
    Type: Application
    Filed: April 28, 2015
    Publication date: August 20, 2015
    Inventors: Steven S. NASIRI, Joseph JIANG, David SACHS
  • Publication number: 20150193006
    Abstract: Interfacing application programs and motion sensors of a device. In one aspect, a high-level command is received from an application program running on a motion sensing device, where the application program implements one of multiple different types of applications available for use on the device. The high-level command requests high-level information derived from the output of motion sensors of the device that include rotational motion sensors and linear motion sensors. The command is translated to cause low-level processing of motion sensor data output by the motion sensors, the low-level processing following requirements of the type of application and determining the high-level information in response to the command. The application program is ignorant of the low-level processing, and the high-level information is provided to the application program.
    Type: Application
    Filed: January 6, 2015
    Publication date: July 9, 2015
    Inventors: Steven S. NASIRI, Joseph JIANG, David SACHS
  • Patent number: 9046937
    Abstract: A device disclosed herein can include a six-axis motion sensor to accurately track three dimensional hand motions. For example, the sensors can include a three-axis accelerometer and a three-axis gyroscope. The remote control device can also include a processing unit integrated with the motion sensors in a single module. The processing unit can convert data regarding the hand motion to data regarding a cursor motion for a cursor that will be displayed on a screen of an electronic device. The processing unit can be integrated with the motion sensors in a single module (e.g. an integrated circuit chip (IC)).
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: June 2, 2015
    Assignee: INVENSENSE, INC.
    Inventors: Steve Nasiri, Joseph Jiang, Shang-Hung Lin, Yuan Zheng
  • Patent number: 9030405
    Abstract: Described herein is an intelligent remote controlling device. The device can include a six-axis motion sensor to accurately track three dimensional hand motions. For example, the sensors can include a three-axis accelerometer and a three-axis gyroscope. The remote control device can also include a processing unit integrated with the motion sensors in a single module. The processing unit can convert data regarding the hand motion to data regarding a cursor motion for a cursor that will be displayed on a screen of an electronic device. The processing unit can be integrated with the motion sensors in a single module. The processing unit can include at least two modes of functionality corresponding to different types of hand motion: a one to one mode where the cursor directly tracks the hand motion and a non-linear mode that filters data from the motion sensors to eliminate hand jitter.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: May 12, 2015
    Assignee: Invensense, Inc.
    Inventors: Steve Nasiri, Joseph Jiang, Shang-Hung Lin, Yuan Zheng
  • Patent number: 8952832
    Abstract: Interfacing application programs and motion sensors of a device. In one aspect, a high-level command is received from an application program running on a motion sensing device, where the application program implements one of multiple different types of applications available for use on the device. The high-level command requests high-level information derived from the output of motion sensors of the device that include rotational motion sensors and linear motion sensors. The command is translated to cause low-level processing of motion sensor data output by the motion sensors, the low-level processing following requirements of the type of application and determining the high-level information in response to the command. The application program is ignorant of the low-level processing, and the high-level information is provided to the application program.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 10, 2015
    Assignee: Invensense, Inc.
    Inventors: Steven S. Nasiri, Joseph Jiang, David Sachs
  • Publication number: 20130271372
    Abstract: Described herein is an intelligent remote controlling device (e.g. a mobile phone). The device can include a six-axis motion sensor to accurately track three dimensional hand motions. For example, the sensors can include a three-axis accelerometer and a three-axis gyroscope. The remote control device can also include a processing unit integrated with the motion sensors in a single module. The processing unit can convert data regarding the hand motion to data regarding a cursor motion for a cursor that will be displayed on a screen of an electronic device. The processing unit can be integrated with the motion sensors in a single module (e.g. an integrated circuit chip (IC)). The processing unit can include at least two modes of functionality corresponding to different types of hand motion: a one to one mode where the cursor directly tracks the hand motion and a non-linear mode that filters data from the motion sensors to eliminate hand jitter.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 17, 2013
    Inventors: Steve Nasiri, Joseph Jiang, Shang-Hung Lin, Yuan Zheng
  • Publication number: 20120200497
    Abstract: Described herein is an intelligent remote controlling device. The device can include a six-axis motion sensor to accurately track three dimensional hand motions. For example, the sensors can include a three-axis accelerometer and a three-axis gyroscope. The remote control device can also include a processing unit integrated with the motion sensors in a single module. The processing unit can convert data regarding the hand motion to data regarding a cursor motion for a cursor that will be displayed on a screen of an electronic device. The processing unit can be integrated with the motion sensors in a single module. The processing unit can include at least two modes of functionality corresponding to different types of hand motion: a one to one mode where the cursor directly tracks the hand motion and a non-linear mode that filters data from the motion sensors to eliminate hand jitter.
    Type: Application
    Filed: June 20, 2011
    Publication date: August 9, 2012
    Applicant: INVENSENSE, INC.
    Inventors: Steve Nasiri, Joseph Jiang, Shang-Hung Lin, Yuan Zheng
  • Publication number: 20090265671
    Abstract: Mobile devices using motion gesture recognition. In one aspect, processing motion to control a portable electronic device includes receiving, on the device, sensed motion data derived from motion sensors of the device and based on device movement in space. The motion sensors include at least three rotational motion sensors and at least three accelerometers. A particular operating mode is determined to be active while the movement of the device occurs, the mode being one of multiple different operating modes of the device. Motion gesture(s) are recognized from the motion data from a set of motion gestures available for recognition in the active operating mode. Each of the different operating modes, when active, has a different set of gestures available. State(s) of the device are changed based on the recognized gestures, including changing output of a display screen on the device.
    Type: Application
    Filed: October 15, 2008
    Publication date: October 22, 2009
    Applicant: INVENSENSE
    Inventors: DAVID SACHS, STEVEN S. NASIRI, JOSEPH JIANG, ANJIA GU
  • Publication number: 20090184849
    Abstract: Interfacing application programs and motion sensors of a device. In one aspect, a high-level command is received from an application program running on a motion sensing device, where the application program implements one of multiple different types of applications available for use on the device. The high-level command requests high-level information derived from the output of motion sensors of the device that include rotational motion sensors and linear motion sensors. The command is translated to cause low-level processing of motion sensor data output by the motion sensors, the low-level processing following requirements of the type of application and determining the high-level information in response to the command. The application program is ignorant of the low-level processing, and the high-level information is provided to the application program.
    Type: Application
    Filed: April 21, 2008
    Publication date: July 23, 2009
    Applicant: INVENSENSE, INC.
    Inventors: Steven S. NASIRI, Joseph Jiang, David Sachs