Patents by Inventor Joseph Kocal
Joseph Kocal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9266809Abstract: A solid terephthalic acid composition and a process for producing terephthalic acid from para-xylene. The process comprises forming a mixture comprising the para-xylene, a solvent, a bromine source, and a catalyst; and oxidizing the para-xylene by contacting the mixture with an oxidizing agent at oxidizing conditions to produce a solid oxidation product comprising terephthalic acid, para-toluic acid, 4-carboxybenzaldehyde. The solvent comprises a carboxylic acid having from 1 to 7 carbon atoms and an dialkyl imidazolium ionic liquid; and the catalyst comprises at least one of cobalt, titanium, manganese, chromium, copper, nickel, vanadium, iron, molybdenum, tin, cerium, and zirconium. The solid terephthalic acid composition comprises, less than about 4,000 ppm-wt 4-carboxybenzaldehyde content, and more than about 2,000 ppm-wt a para-toluic acid.Type: GrantFiled: November 7, 2014Date of Patent: February 23, 2016Assignees: UOP LLC, BORESKOV INSTITUTE OF CATALYSISInventors: Alakananda Bhattacharyya, Joseph A. Kocal, Joel T. Walenga, Nikolay Y. Adonin, Nina I. Kuznetsova, Bair S. Bal'zhinimaev
-
Patent number: 9193921Abstract: A process for transalkylating a coal tar stream is described. A coal tar stream is provided, and is fractionated to provide at least one hydrocarbon stream having polycyclic aromatics. The hydrocarbon stream is hydrotreated in a hydrotreating zone, and then hydrocracked in a hydrocracking zone. A light aromatics stream is added to the hydrocracking zone. The light aromatics stream comprises one or more light aromatics having a ratio of methyl/aromatic available position that is lower than a ratio of methyl/aromatic available position for the hydrotreated stream. The hydrocracked stream is transalkylated in the hydrocracking zone.Type: GrantFiled: May 21, 2015Date of Patent: November 24, 2015Assignee: UOP LLCInventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
-
Patent number: 9193644Abstract: A process for selectively dealkylating aromatic compounds includes providing a coal tar stream comprising aromatic compounds and hydrotreating the coal tar stream to reduce a concentration of one or more of organic sulfur, nitrogen, and oxygen in the coal tar stream, and to hydrogenate at least a portion of the aromatic compounds in the coal tar stream. The process further includes hydrocracking the hydrotreated coal tar stream to further hydrogenate the aromatic compounds and to crack at least one ring of multi-ring aromatic compounds to form single-ring aromatic compounds. The single-ring aromatic compounds present in the hydrocracked stream are then dealkylated to remove alkyl groups containing two or more carbon atoms.Type: GrantFiled: May 21, 2015Date of Patent: November 24, 2015Assignee: UOP LLCInventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
-
Patent number: 9193646Abstract: A process for providing aromatics from a coal tar stream. A coal tar stream is provided, and the coal tar stream is fractionated into at least a naphtha range stream. The naphtha range stream is hydrotreated, and the hydrotreated naphtha range stream is separated to provide at least a naphthene rich stream. The naphthene rich stream is reformed or dehydrogenated to convert the naphthene. The dehydrogenated naphthene rich stream may be combined with a portion of a reformed crude oil hydrocarbon stream.Type: GrantFiled: May 21, 2015Date of Patent: November 24, 2015Assignee: UOP LLCInventors: Matthew Lippmann, Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Kurt M. Vanden Bussche
-
Patent number: 9162955Abstract: A process for pyrolyzing a coal feed is described. A coal feed is pyrolyzed into a coal tar stream and a coke stream in a pyrolysis zone. The coal tar stream is separated into at least a pitch stream comprising aromatic hydrocarbons. The pitch stream is reacted in a reaction zone to add at least one functional group to an aromatic ring of the aromatic hydrocarbons in the pitch stream. The functionalized pitch stream is recycled to the pyrolysis zone.Type: GrantFiled: August 26, 2014Date of Patent: October 20, 2015Assignee: UOP LLCInventors: Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Matthew Lippmann, Kurt M. Vanden Bussche
-
Publication number: 20150259612Abstract: A process for transalkylating a coal tar stream is described. A coal tar stream is provided, and is fractionated to provide at least one hydrocarbon stream having polycyclic aromatics. The hydrocarbon stream is hydrotreated in a hydrotreating zone, and then hydrocracked in a hydrocracking zone. A light aromatics stream is added to the hydrocracking zone. The light aromatics stream comprises one or more light aromatics having a ratio of methyl/aromatic available position that is lower than a ratio of methyl/aromatic available position for the hydrotreated stream. The hydrocracked stream is transalkylated in the hydrocracking zone.Type: ApplicationFiled: May 21, 2015Publication date: September 17, 2015Inventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
-
Publication number: 20150251971Abstract: A process for selectively dealkylating aromatic compounds includes providing a coal tar stream comprising aromatic compounds and hydrotreating the coal tar stream to reduce a concentration of one or more of organic sulfur, nitrogen, and oxygen in the coal tar stream, and to hydrogenate at least a portion of the aromatic compounds in the coal tar stream. The process further includes hydrocracking the hydrotreated coal tar stream to further hydrogenate the aromatic compounds and to crack at least one ring of multi-ring aromatic compounds to form single-ring aromatic compounds. The single-ring aromatic compounds present in the hydrocracked stream are then dealkylated to remove alkyl groups containing two or more carbon atoms.Type: ApplicationFiled: May 21, 2015Publication date: September 10, 2015Inventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
-
Publication number: 20150251977Abstract: A process for providing aromatics from a coal tar stream. A coal tar stream is provided, and the coal tar stream is fractionated into at least a naphtha range stream. The naphtha range stream is hydrotreated, and the hydrotreated naphtha range stream is separated to provide at least a naphthene rich stream. The naphthene rich stream is reformed or dehydrogenated to convert the naphthene. The dehydrogenated naphthene rich stream may be combined with a portion of a reformed crude oil hydrocarbon stream.Type: ApplicationFiled: May 21, 2015Publication date: September 10, 2015Inventors: Matthew Lippmann, Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Kurt M. Vanden Bussche
-
Patent number: 9079816Abstract: A process for producing alkylated aromatic compounds includes pyrolyzing a coal feed to produce a coke stream and a coal tar stream. The coal tar stream is hydrotreated and the resulting hydrotreated coal tar stream is cracked. A portion of the cracked coal tar stream is separated to obtain a fraction having an initial boiling point in the range of about 60° C. to about 180° C., and an aromatics-rich hydrocarbon stream is extracted by contacting the fraction with one or more solvents. The aromatics-rich hydrocarbon stream is contacted with an alkylating agent to produce an alkylated aromatic stream, or the aromatics-rich hydrocarbon stream is reacted with an aliphatic compound or methanol in the presence of a catalyst to produce a methylated aromatic stream. The alkylated aromatic stream, the methylated aromatic stream, or both are separated into at least a benzene stream, a toluene stream, and a xylenes stream.Type: GrantFiled: August 22, 2014Date of Patent: July 14, 2015Assignee: UOP LLCInventors: James A. Johnson, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, Stanley J. Frey, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar
-
Patent number: 9073805Abstract: A process for transalkylating a coal tar stream is described. A coal tar stream is provided, and is fractionated to provide at least one hydrocarbon stream having polycyclic aromatics. The hydrocarbon stream is hydrotreated in a hydrotreating zone, and then hydrocracked in a hydrocracking zone. A light aromatics stream is added to the hydrocracking zone. The light aromatics stream comprises one or more light aromatics having a ratio of methyl/aromatic available position that is lower than a ratio of methyl/aromatic available position for the hydrotreated stream. The hydrocracked stream is transalkylated in the hydrocracking zone.Type: GrantFiled: August 28, 2014Date of Patent: July 7, 2015Assignee: UOP LLCInventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
-
Patent number: 9073811Abstract: A process for providing aromatics from a coal tar stream. A coal tar stream is provided, and the coal tar stream is fractionated into at least a naphtha range stream. The naphtha range stream is hydrotreated, and the hydrotreated naphtha range stream is separated to provide at least a naphthene rich stream. The naphthene rich stream is reformed or dehydrogenated to convert the naphthene. The dehydrogenated naphthene rich stream may be combined with a portion of a reformed crude oil hydrocarbon stream.Type: GrantFiled: August 19, 2014Date of Patent: July 7, 2015Assignee: UOP LLCInventors: Matthew Lippmann, Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Kurt M. Vanden Bussche
-
Patent number: 9067853Abstract: A process for selectively dealkylating aromatic compounds includes providing a coal tar stream comprising aromatic compounds and hydrotreating the coal tar stream to reduce a concentration of one or more of organic sulfur, nitrogen, and oxygen in the coal tar stream, and to hydrogenate at least a portion of the aromatic compounds in the coal tar stream. The process further includes hydrocracking the hydrotreated coal tar stream to further hydrogenate the aromatic compounds and to crack at least one ring of multi-ring aromatic compounds to form single-ring aromatic compounds. The single-ring aromatic compounds present in the hydrocracked stream are then dealkylated to remove alkyl groups containing two or more carbon atoms.Type: GrantFiled: August 25, 2014Date of Patent: June 30, 2015Assignee: UOP LLCInventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
-
Patent number: 9045407Abstract: A process and a mixture for oxidizing an alkyl-aromatic compound comprises forming a mixture comprising the alkyl-aromatic compound, a solvent, a bromine source, and a catalyst; and contacting the mixture with an oxidizing agent at oxidizing conditions to produce an oxidation product comprising at least one of an aromatic aldehyde, an aromatic alcohol, an aromatic ketone, and an aromatic carboxylic acid. The solvent comprises a carboxylic acid having from 1 to 7 carbon atoms and an ionic liquid selected from the group consisting of an imidazolium ionic liquid, a pyridinium ionic liquid, a phosphonium ionic liquid, a tetra alkyl ammonium ionic liquid, and combinations thereof. The catalyst comprises at least one of cobalt, titanium, manganese, chromium, copper, nickel, vanadium, iron, molybdenum, tin, cerium, and zirconium.Type: GrantFiled: June 8, 2011Date of Patent: June 2, 2015Assignees: UOP LLC, Boreskov Institute of CatalysisInventors: Alakananda Bhattacharyya, Joseph A. Kocal, Joel T. Walenga, Nikolay Y. Adonin, Nina I. Kuznetsova, Bair S. Bal'zhinimaev
-
Publication number: 20150141699Abstract: A process for pyrolyzing a coal feed is described. A coal feed is pyrolyzed into a coal tar stream and a coke stream in a pyrolysis zone. The coal tar stream is separated into at least a pitch stream comprising aromatic hydrocarbons. The pitch stream is reacted in a reaction zone to add at least one functional group to an aromatic ring of the aromatic hydrocarbons in the pitch stream. The functionalized pitch stream is recycled to the pyrolysis zone.Type: ApplicationFiled: August 26, 2014Publication date: May 21, 2015Inventors: Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Matthew Lippmann, Kurt M. Vanden Bussche
-
Publication number: 20150136653Abstract: A process for gasifying and pyrolyzing coal is described. A first coal feed is pyrolyzed into a coal tar stream and a coke stream in a pyrolysis zone. A second coal feed is gasified in a gasification zone to produce an effluent stream. Contaminants are removed from the effluent stream to provide a purified effluent stream. The purified effluent stream is introduced to the pyrolysis zone.Type: ApplicationFiled: August 27, 2014Publication date: May 21, 2015Inventors: Kurt M. Vanden Bussche, Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Matthew Lippmann
-
Publication number: 20150141724Abstract: A process for selectively dealkylating aromatic compounds includes providing a coal tar stream comprising aromatic compounds and hydrotreating the coal tar stream to reduce a concentration of one or more of organic sulfur, nitrogen, and oxygen in the coal tar stream, and to hydrogenate at least a portion of the aromatic compounds in the coal tar stream. The process further includes hydrocracking the hydrotreated coal tar stream to further hydrogenate the aromatic compounds and to crack at least one ring of multi-ring aromatic compounds to form single-ring aromatic compounds. The single-ring aromatic compounds present in the hydrocracked stream are then dealkylated to remove alkyl groups containing two or more carbon atoms.Type: ApplicationFiled: August 25, 2014Publication date: May 21, 2015Inventors: Stanley J. Frey, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, James A. Johnson, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar, Kurt M. Vanden Bussche
-
Publication number: 20150136657Abstract: A multifunction hydrotreater includes a particulate removal zone having a particulate trap to remove particulate contaminants from a coal tar stream and a demetallizing zone including a demetallizing catalyst to remove organically bound metals from the departiculated stream. The demetallizing zone is positioned after the particulate removal zone. The hydrotreater also includes a hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation zone positioned after the demetallization zone, which includes at least one hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation catalyst to provide a hydrotreated coal tar stream.Type: ApplicationFiled: August 12, 2014Publication date: May 21, 2015Inventors: Vasant P. Thakkar, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, Stanley J. Frey, James A. Johnson, Joseph A. Kocal, Matthew Lippmann
-
Publication number: 20150136658Abstract: A process for removing ash and heavy hydrocarbon compounds from coal is described. The coal feed, the coal tar stream, or a coal tar fraction is contacted with a solvent to dissolve a soluble portion of the coal tar stream, the ash and heavy hydrocarbons being insoluble in the solvent, the solvent selected from the group consisting of dimethyl sulfoxide, sulfolane, dimethyl formamide, glyme, diglyme, ionic liquids, and combinations thereof, with the proviso that an anion of the ionic liquid is not a dialkylphosphate.Type: ApplicationFiled: August 26, 2014Publication date: May 21, 2015Inventors: Joseph A. Kocal, Paul T. Barger, Maureen L. Bricker, Matthew Lippmann, Kurt M. Vanden Bussche
-
Publication number: 20150141700Abstract: A process for producing alkylated aromatic compounds includes pyrolyzing a coal feed to produce a coke stream and a coal tar stream. The coal tar stream is hydrotreated and the resulting hydrotreated coal tar stream is cracked. A portion of the cracked coal tar stream is separated to obtain a fraction having an initial boiling point in the range of about 60° C. to about 180° C., and an aromatics-rich hydrocarbon stream is extracted by contacting the fraction with one or more solvents. The aromatics-rich hydrocarbon stream is contacted with an alkylating agent to produce an alkylated aromatic stream, or the aromatics-rich hydrocarbon stream is reacted with an aliphatic compound or methanol in the presence of a catalyst to produce a methylated aromatic stream. The alkylated aromatic stream, the methylated aromatic stream, or both are separated into at least a benzene stream, a toluene stream, and a xylenes stream.Type: ApplicationFiled: August 22, 2014Publication date: May 21, 2015Inventors: James A. Johnson, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, Stanley J. Frey, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar
-
Publication number: 20150141723Abstract: A process for hydrotreating a coal tar stream is described. A coal tar stream is provided, and the coal tar stream is fractionated into at least a light naphtha range hydrocarbon stream having a boiling point in the range of about 85° C. (185° F.) to about 137.8° C. (280° F.). The light naphtha range hydrocarbon stream is hydrotreated by contacting the light naphtha range hydrocarbon stream with a naphtha hydrotreating catalyst.Type: ApplicationFiled: August 20, 2014Publication date: May 21, 2015Inventors: Maureen L. Bricker, Paul T. Barger, Joseph A. Kocal, Matthew Lippmann, Kurt M. Vanden Bussche