Patents by Inventor Joseph L. Evins

Joseph L. Evins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11066941
    Abstract: A transition duct support apparatus and a method to support an exit frame in a transition duct in a gas turbine engine are provided. A stiffener (24) may be arranged to provide support to an outer edge (27) of an exit frame (12) in a transition duct (14). Stiffener (24) may be configured to circumferentially extend between mutually opposed corners (30) of the exit frame of the transition duct. A brace (26) may be connected to a centrally-disposed section (20) and may extend to support respective end portions (32) of the stiffener. The support apparatus is effective to provide a respective tuned level of stiffness support with respect to one or more axes of the exit frame in the transition duct. The apparatus and method may be effective for distributing mechanical stresses on the exit frame of the transition duct and/or neighboring regions in the transition duct.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: July 20, 2021
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Manish Kumar, Joseph L. Evins, Khamhou Sayavong, Matthias Hase, Miguel Bascones, Adam J. Weaver, Robert H. Bartley, Lashanda N. Williams
  • Publication number: 20170268355
    Abstract: A transition duct support apparatus and a method to support an exit frame in a transition duct in a gas turbine engine are provided. A stiffener (24) may be arranged to provide support to an outer edge (27) of an exit frame (12) in a transition duct (14). Stiffener (24) may be configured to circumferentially extend between mutually opposed corners (30) of the exit frame of the transition duct. A brace (26) may be connected to a centrally-disposed section (20) and may extend to support respective end portions (32) of the stiffener. The support apparatus is effective to provide a respective tuned level of stiffness support with respect to one or more axes of the exit frame in the transition duct. The apparatus and method may be effective for distributing mechanical stresses on the exit frame of the transition duct and/or neighboring regions in the transition duct.
    Type: Application
    Filed: December 11, 2014
    Publication date: September 21, 2017
    Inventors: Manish Kumar, Joseph L. Evins, Khamhou Sayavong, Matthias Hase, Miguel Bascones, Adam J. Weaver, Robert H. Bartley, Lashanda N. Williams
  • Patent number: 8894361
    Abstract: A gas turbine engine compressor has a compressor case comprising spaced apart inner and outer walls. An axial rotor is positioned within the outer wall. A bearing structure supports the axial rotor for rotation. A plurality of inlet guide vanes are coupled to the outer wall of the compressor case and radially extend inwardly, wherein each of at least a sub-set of said inlet guide vanes comprises a radial bore. Nested tie rods are received within a respective one of the inlet guide vane radial bores. Each tie rod comprises an outward end attached to the compressor case outer wall and an inward end attached to the compressor case inner wall.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: November 25, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Jose L. Rodriguez, Joseph L. Evins
  • Publication number: 20130052003
    Abstract: A gas turbine engine compressor has a compressor case comprising spaced apart inner and outer walls. An axial rotor is positioned within the outer wall. A bearing structure supports the axial rotor for rotation. A plurality of inlet guide vanes are coupled to the outer wall of the compressor case and radially extend inwardly, wherein each of at least a sub-set of said inlet guide vanes comprises a radial bore. Nested tie rods are received within a respective one of the inlet guide vane radial bores. Each tie rod comprises an outward end attached to the compressor case outer wall and an inward end attached to the compressor case inner wall.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventors: Jose L. Rodriguez, Joseph L. Evins