Patents by Inventor Joseph L. Levy

Joseph L. Levy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974288
    Abstract: A method and apparatus for transmitting uplink control information (UCI) for Long Term Evolution-Advanced (LTE-A) using carrier aggregation is disclosed. Methods for UCI transmission in the uplink control channel, uplink shared channel or uplink data channel are disclosed. The methods include transmitting channel quality indicators (CQI), precoding matrix indicators (PMI), rank indicators (RI), hybrid automatic repeat request (HARQ) acknowledgement/non-acknowledgement (ACK/NACK), channel status reports (CQI/PMI/RI), source routing (SR) and sounding reference signals (SRS). In addition, methods for providing flexible configuration in signaling UCI, efficient resource utilization, and support for high volume UCI overhead in LTE-A are disclosed.
    Type: Grant
    Filed: December 28, 2022
    Date of Patent: April 30, 2024
    Assignee: InterDigital Patent Holdings, Inc.
    Inventors: Erdem Bala, Philip J. Pietraski, Sung-Hyuk Shin, Guodong Zhang, Allan Y. Tsai, Joseph S. Levy, Pascal M. Adjakple, John W. Haim, Robert L. Olesen, Kyle Jung-Lin Pan
  • Patent number: 7860136
    Abstract: A laser diode package (10) according to the present invention is tolerant of short-circuit and open-circuit failures. The laser diode package (10) includes a laser diode bar (12), a forward-biased diode (14), a heat sink (18), and a lid (16) which may have fusible links (86). The laser diode bar (12) and the forward-biased diode (14) are electrically connected in parallel between the heat sink (18) and the lid (16). The emitting region of the laser diode bar (12) is aligned to emit radiation away from the forward-biased diode (14). Several packages can be stacked together to form a laser diode array (42). The forward-biased diode (14) allows current to pass through it when an open-circuit failure has occurred in the corresponding laser diode bar (12), thus preventing an open-circuit failure from completely disabling the array (42).
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: December 28, 2010
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Edward F. Stephens, IV, Joseph L Levy, John S. Whiteley
  • Patent number: 7330491
    Abstract: A laser diode package (10) according to the present invention is tolerant of short-circuit and open-circuit failures. The laser diode package (10) includes a laser diode bar (12), a forward-biased diode (14), a heat sink (18), and a lid (16) which may have fusible links (86). The laser diode bar (12) and the forward-biased diode (14) are electrically connected in parallel between the heat sink (18) and the lid (16). The emitting region of the laser diode bar (12) is aligned to emit radiation away from the forward-biased diode (14). Several packages can be stacked together to form a laser diode array (42). The forward-biased diode (14) allows current to pass through it when an open-circuit failure has occurred in the corresponding laser diode bar (12), thus preventing an open-circuit failure from completely disabling the array (42).
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: February 12, 2008
    Assignee: Northrop Grumman Space & Missions Systems Corporation
    Inventors: Edward F. Stephens, IV, Joseph L. Levy, John S. Whiteley
  • Publication number: 20040196879
    Abstract: A laser diode package (10) according to the present invention is tolerant of short-circuit and open-circuit failures. The laser diode package (10) includes a laser diode bar (12), a forward-biased diode (14), a heat sink (18), and a lid (16) which may have fusible links (86). The laser diode bar (12) and the forward-biased diode (14) are electrically connected in parallel between the heat sink (18) and the lid (16). The emitting region of the laser diode bar (12) is aligned to emit radiation away from the forward-biased diode (14). Several packages can be stacked together to form a laser diode array (42). The forward-biased diode (14) allows current to pass through it when an open-circuit failure has occurred in the corresponding laser diode bar (12), thus preventing an open-circuit failure from completely disabling the array (42).
    Type: Application
    Filed: April 20, 2004
    Publication date: October 7, 2004
    Inventors: Edward F. Stephens, Joseph L. Levy, John S. Whiteley
  • Patent number: 6728275
    Abstract: A laser diode package (10) according to the present invention is tolerant of short-circuit and open-circuit failures. The laser diode package (10) includes a laser diode bar (12), a forward-biased diode (14), a heat sink (18), and a lid (16) which may have fusible links (86). The laser diode bar (12) and the forward-biased diode (14) are electrically connected in parallel between the heat sink (18) and the lid (16). The emitting region of the laser diode bar (12) is aligned to emit radiation away from the forward-biased diode (14). Several packages can be stacked together to form a laser diode array (42). The forward-biased diode (14) allows current to pass through it when an open-circuit failure has occurred in the corresponding laser diode bar (12), thus preventing an open-circuit failure from completely disabling the array (42).
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: April 27, 2004
    Assignee: TRW Inc.
    Inventors: Edward F. Stephens, IV, Joseph L. Levy, John S. Whiteley
  • Publication number: 20040057479
    Abstract: A laser diode package (10) according to the present invention is tolerant of short-circuit and open-circuit failures. The laser diode package (10) includes a laser diode bar (12), a forward-biased diode (14), a heat sink (18), and a lid (16) which may have fusible links (86). The laser diode bar (12) and the forward-biased diode (14) are electrically connected in parallel between the heat sink (18) and the lid (16). The emitting region of the laser diode bar (12) is aligned to emit radiation away from the forward-biased diode (14). Several packages can be stacked together to form a laser diode array (42). The forward-biased diode (14) allows current to pass through it when an open-circuit failure has occurred in the corresponding laser diode bar (12), thus preventing an open-circuit failure from completely disabling the array (42).
    Type: Application
    Filed: September 19, 2002
    Publication date: March 25, 2004
    Inventors: Edward F. Stephens, Joseph L. Levy, John S. Whiteley
  • Patent number: 5259925
    Abstract: A method for cleaving semiconductor devices along planes accurately positioned. Resist is applied to a major surface of the semiconductor device and a mask is projected upon the resist covered major surface. The mask is opaque in those regions in which no cleave is desired. Following the exposure of the resist, the removal of the mask and the development of the resist, an ion beam is positioned incident upon the semiconductor surface such that ion beam etching occurs in the areas in which no resist covers the semiconductor structure. Once a sufficient depth is etched in the areas not covered with resist such that the strength of the semiconductor structure in those areas is significantly less than in those areas covered by resist, the ion beam etching process is ended and the resist is stripped from the semiconductor structure. Subsequently, force is applied within the area in which the ion beam etching occurred to cleave the semiconductor structure within that region.
    Type: Grant
    Filed: June 5, 1992
    Date of Patent: November 9, 1993
    Assignee: McDonnell Douglas Corporation
    Inventors: Robert W. Herrick, Joseph L. Levy, Danny J. Krebs
  • Patent number: 5189294
    Abstract: A sliced transform lens is used to combine and focus the optical output signals of a planar M by N laser diode array onto M detector elements in a linear detector by displacing lens slices. A sliced transform lens is used to separate the composite image of the laser diode array on the detector plane into ten spots (400 emitters per spot) by displacing the lens slices relative to each other collimated He-Ne laser beam was used to examine the sliced transform lens and the linear detector array was used to measure the image sizes and the crosstalks between the images. The results show the minimum separation is approximately five detector spacings apart. The lens elements are cut from a bulk material (BK-7) and ground to desired thickness and parallelism. Then the elements are "glued" together with standard optical wax compound and ground to the prescribed focal length. THe lens slices are cut before grinding, hence the composite lens is symmetric and zero-curf configuration is preserved.
    Type: Grant
    Filed: July 8, 1992
    Date of Patent: February 23, 1993
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: John E. Jackson, Joseph L. Levy, Christopher C. Leung, Gordon H. Burkhart
  • Patent number: 4426707
    Abstract: This external cavity laser utilizes an unstable resonator in conjunction with a high reflectivity stripe end mirror which is oriented substantially parallel to the plane of the maximum divergence of the laser diode output beam and whose axis is substantially parallel to the plane of the junction of the laser diode. This configuration operates with high efficiency to select only the fundamental mode of the laser diode with a minimal divergence in the output beam.
    Type: Grant
    Filed: November 9, 1981
    Date of Patent: January 17, 1984
    Assignee: McDonnell Douglas Corporation
    Inventors: Danny W. Martin, Joseph L. Levy