Patents by Inventor Joseph L. Sullivan

Joseph L. Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180184933
    Abstract: A wearable cardioverter defibrillator (WCD) including a support structure configured to be worn by an ambulatory patient, an energy storage module configured to store an electrical charge, a discharge circuit coupled to the energy storage module, electrodes configured to render an electrocardiogram (ECG) signal of the patient while the patient is wearing the support structure, a user interface configured to output an alarm in response to a noise alarm signal, and a processor. The processor is configured to receive the ECG signal, determine whether noise is present on the ECG signal, determine from the ECG signal whether a shock criterion is met, and cause the user interface to generate the noise alarm signal when the noise is present on the ECG signal and the shock criterion is met and not generate the noise alarm signal when noise is present on the ECG signal and the shock criterion is not met.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 5, 2018
    Inventors: Joseph L. Sullivan, Jaeho Kim
  • Publication number: 20180185662
    Abstract: A wearable cardioverter defibrillator (WCD) having a processor configured to receive a signal indicating a position and/or movement of the ambulatory patient while the ambulatory patient is wearing the support structure receive the ECG signal, determine from an ECG signal whether a shock criterion is met, determine a confirmation time period and/or a response time period based on the position and/or movement of the ambulatory patient, determine from the ECG signal whether the shock criterion is met after the confirmation time period has elapsed, cause the user interface to generate the shock alert signal based on the shock criterion determined after the confirmation time period has elapsed, and control the discharge circuit to discharge the stored electrical charge when a predetermined time period has elapsed after the shock alert signal.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 5, 2018
    Inventors: Phillip D. Foshee, JR., David P. Finch, Pamela Breske, Laura M. Gustavson, Joseph L. Sullivan, Jaeho Kim
  • Publication number: 20180110995
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments the WCD system includes a speaker system that transmits a sound designed to assist a bystander to perform CPR. Optionally CPR chest compressions received by the patient can be further detected, and feedback can be given. In embodiments, a WCD system may include a user interface that can be controlled to output CPR prompts tailored to a skill level of the bystander.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 26, 2018
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, JR., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Publication number: 20180110994
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system and a memory. Prompts have been saved in advance in the patient's own voice, and stored in the memory. In case of an emergency, the prompts may be played by the speaker system in the patient's own voice, and heard by a bystander.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 26, 2018
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, JR., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Patent number: 9950184
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system, a memory and a proximity detector. Prompts have been stored in the memory. In case of an emergency, upon inferring that no bystander is nearby, the speaker system may transmit a sound at a higher intensity than otherwise, hoping to attract attention.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: April 24, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Jr., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Publication number: 20180099148
    Abstract: A medical device such as an external defibrillator delivers electrical therapy using a special pulse sequence. The special pulse sequence includes a defibrillation shock that is automatically followed by a quick succession of automatic post-shock anti-tachycardia (APSAT) pacing pulses. Because of the pacing pulses, the defibrillation shock can be of lesser energy than an equivalent defibrillation shock of a larger energy. Accordingly, the external defibrillator can be made physically smaller and weigh less, without sacrificing the therapeutic effect of a larger external defibrillator that would deliver a defibrillation shock of higher energy. As such, the defibrillator is easier to configure for transporting, handling, and even wearing.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 12, 2018
    Inventors: Joseph L. Sullivan, David Thomas Brown, David Peter Finch
  • Publication number: 20180093102
    Abstract: A Wearable Cardioverter Defibrillator (WCD) system has a processor that performs two different analyses to an ECG of the patient. A first-level analysis can be computationally economical, while a fuller second-level analysis can give shock/no-shock advice with more certainty. In some of these embodiments the second-level analysis of the ECG is performed only if the first-level analysis of the ECG detects a possible shockable condition. As such, the first-level analysis may operate as a gatekeeping function, often preventing the more computationally intensive second-level analysis from being performed. An advantage can be that the WCD system needs to store less charge, for powering the processor. In turn, this permits portions of the WCD system to be less bulky and weigh less.
    Type: Application
    Filed: September 26, 2017
    Publication date: April 5, 2018
    Inventors: Joseph L. Sullivan, Jaeho Kim
  • Patent number: 9889313
    Abstract: A medical device such as an external defibrillator delivers electrical therapy using a special pulse sequence. The special pulse sequence includes a defibrillation shock that is automatically followed by a quick succession of automatic post-shock anti-tachycardia (APSAT) pacing pulses. Because of the pacing pulses, the defibrillation shock can be of lesser energy than an equivalent defibrillation shock of a larger energy. Accordingly, the external defibrillator can be made physically smaller and weigh less, without sacrificing the therapeutic effect of a larger external defibrillator that would deliver a defibrillation shock of higher energy. As such, the defibrillator is easier to configure for transporting, handling, and even wearing.
    Type: Grant
    Filed: February 11, 2017
    Date of Patent: February 13, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, David Thomas Brown, David Peter Finch
  • Patent number: 9878173
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments the WCD system includes a microphone. The WCD system might be ready to deliver a shock, but may first wait before doing so until it hears from a bystander a preset ready word, such as: “CLEAR”.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: January 30, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Jr., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Publication number: 20170368364
    Abstract: Components of wearable cardiac defibrillator (WCD) systems, software, and methods are provided. A WCD system includes a support structure that a patient can wear and electrodes that can capture at least two of the patient's ECG signals. A component includes an energy storage module that can store an electrical charge, a discharge circuit, and a processor that can make a shock/no shock determination, and cause the discharge circuit to discharge the stored charge, if the determination is to shock. In some embodiments, the processor discards at least one of the ECG signals prior to making the shock/no shock determination. The determination can be made from the remaining one or more ECG signals. In some embodiments, the processor makes an aggregate shock/no shock determination from two or more of the ECG signals.
    Type: Application
    Filed: August 10, 2017
    Publication date: December 28, 2017
    Inventors: Joseph L. Sullivan, Robert P. Marx, JR., David P. Finch
  • Publication number: 20170368363
    Abstract: In some embodiments, a wearable cardioverter defibrillator (“WCD”) system may output a closing human-perceptible indication, after detecting a shockable cardiac arrhythmia, and after further determining that it will not shock. This may succeed in informing the patient that the WCD system will not deliver a shock responsive to the cardiac arrhythmia, which may have just self-terminated. The information may give comfort to the patient who may be conscious, and may recognize that his or her ventricular tachycardia has self-terminated. Moreover, the patient will know that he or she will not be unnecessarily shocked while conscious, and will not even need to press a cancel switch.
    Type: Application
    Filed: August 9, 2017
    Publication date: December 28, 2017
    Inventors: Phillip D. Foshee, JR., David P. Finch, Laura M. Gustavson, Nikolai Korsun, Joseph L. Sullivan, Gregory T. Kavounas
  • Publication number: 20170360375
    Abstract: In embodiments, an external medical device is intended to care for a patient. If it receives an input that signifies that ventilation artifact is present in a signal of the patient, it transmits a corrective signal responsive to the received input. In further embodiments, a patient signal is received, which is generated from a patient while the patient is or was receiving chest compressions at a frequency Fc, and also receiving ventilations at frequency Fv. At least one filter mechanism may be applied to the patient signal to substantially remove artifacts at a) frequency Fc, b) a higher harmonic of frequency Fc, and c) a third frequency substantially equaling frequency Fc plus or minus frequency Fv, while substantially passing other frequencies between them. As a result, the patient signal can be cleaner, for diagnosing the patient's state more accurately.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Inventors: Joseph L. Sullivan, Robert G. Walker
  • Publication number: 20170319862
    Abstract: A wearable cardioverter defibrillator (“WCD”) system may output a loud sound after detecting and validating a shockable cardiac arrhythmia. In such embodiments, however, the WCD system might not sound a loud alarm before validating the arrhythmia thoroughly, i.e. for a longer time, thus giving the arrhythmia a further chance to self-terminate. The WCD system may thus detect more robustly the cardiac arrhythmias that do not self-terminate quickly. Such arrhythmias that self-terminate quickly may occur from likely harmless events occurring multiple times in the daily life of the patient, such as the patient becoming “winded” from climbing stairs. In embodiments the WCD system may notify the patient only discreetly, or even not at all. The lack of sounding such a loud alarm responsive to such events reduces the overall number of times in which the patient experiences unwanted attention by others, embarrassment, loss of privacy and dignity, and so on.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 9, 2017
    Inventors: Phillip D. Foshee, JR., David P. Finch, Laura M. Gustavson, Nikolai Korsun, Joseph L. Sullivan
  • Patent number: 9801561
    Abstract: The system and method provide for electrocardiogram analysis and optimization of patient-customized cardiopulmonary resuscitation and therapy delivery. An external medical device includes a housing and a processor within the housing. The processor can be configured to receive an input signal for a patient receiving chest compressions and to select at least one filter mechanism and to apply the filter mechanism to the signal to at least substantially remove chest compression artifacts from the signal. A real time dynamic analysis of a cardiac rhythm is applied to adjust and integrate CPR prompting of a medical device. Real-time cardiac rhythm quality is facilitated using a rhythm assessment meter.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 31, 2017
    Assignee: Physio-Control, Inc.
    Inventors: Joseph L. Sullivan, Ronald Eugene Stickney, Robert G. Walker, Daniel Piraino, Isabelle Banville, Fred Chapman
  • Patent number: 9775566
    Abstract: In embodiments, an external medical device is intended to care for a patient. If it receives an input that signifies that ventilation artifact is present in a signal of the patient, it transmits a corrective signal responsive to the received input. In further embodiments, a patient signal is received, which is generated from a patient while the patient is or was receiving chest compressions at a frequency Fc, and also receiving ventilations at frequency Fv. At least one filter mechanism may be applied to the patient signal to substantially remove artifacts at a) frequency Fc, b) a higher harmonic of frequency Fc, and c) a third frequency substantially equaling frequency Fc plus or minus frequency Fv, while substantially passing other frequencies between them. As a result, the patient signal can be cleaner, for diagnosing the patient's state more accurately.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: October 3, 2017
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Joseph L. Sullivan, Robert G. Walker
  • Patent number: 9770183
    Abstract: Medical devices, software and methods are provided, for making a decision as to whether to pause patient chest compression treatment in connection with administering electric shock therapy to the patient. The decision is made depending whether signal spikes identified in the ECG data are determined to be QRS complexes, or merely likely impulsive artifact caused by the chest compressions.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: September 26, 2017
    Assignee: Physio-Control, Inc.
    Inventor: Joseph L. Sullivan
  • Publication number: 20170266078
    Abstract: Resuscitation devices for performing external chest compression (ECC) and defibrillation on a person and methods using the devices are disclosed. The disclosed devices can include chest compression members and a communication module that can communicate with a remote command center. The disclosed devices can also include an optional defibrillation module that may be integrated. The devices can be coupled to a backboard and can include physiological sensors, electrodes, wheels, controllers, human interface devices, cooling modules, ventilators, cameras, and voice output devices. Methods can include defibrillating, pacing, ventilating, cooling, and performing ECC in an integrated, coordinated, and/or synchronous manner using the full capabilities of the device. Some devices include controllers executing methods for automatically performing the coordinated activities utilizing the device capabilities.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Cynthia Jayne, Ronald E. Stickney, Richard C. Nova, Stephen W. Radons, David R. Hampton, D. Craig Edwards, Joseph L. Sullivan, Steven E. Sjoquist
  • Patent number: 9757581
    Abstract: Components of wearable cardiac defibrillator (WCD) systems, software, and methods are provided. A WCD system includes a support structure that a patient can wear and electrodes that can capture at least two of the patient's ECG signals. A component includes an energy storage module that can store an electrical charge, a discharge circuit, and a processor that can make a shock/no shock determination, and cause the discharge circuit to discharge the stored charge, if the determination is to shock. In some embodiments, the processor discards at least one of the ECG signals prior to making the shock/no shock determination. The determination can be made from the remaining one or more ECG signals. In some embodiments, the processor makes an aggregate shock/no shock determination from two or more of the ECG signals.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: September 12, 2017
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, Robert P. Marx, Jr., David P. Finch
  • Patent number: 9757579
    Abstract: In some embodiments, a wearable cardioverter defibrillator (“WCD”) system may output an opening human-perceptible indication, after detecting a shockable cardiac arrhythmia but before validating it. This may succeed in informing the patient that the WCD system is working, and in particular analyzing a just-detected cardiac arrhythmia. The information may give comfort and confidence to the patient who may be conscious, and be experiencing only ventricular tachycardia but not ventricular fibrillation.
    Type: Grant
    Filed: November 14, 2015
    Date of Patent: September 12, 2017
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Phillip D. Foshee, Jr., David P. Finch, Laura M. Gustavson, Nikolai Korsun, Joseph L. Sullivan, Gregory T. Kavounas
  • Publication number: 20170182329
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system, a memory and a proximity detector. Prompts have been stored in the memory. In case of an emergency, upon inferring that no bystander is nearby, the speaker system may transmit a sound at a higher intensity than otherwise, hoping to attract attention.
    Type: Application
    Filed: November 28, 2016
    Publication date: June 29, 2017
    Inventors: Joseph L.. Sullivan, David Peter Finch, Phillip Dewey Foshee, JR., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas