Patents by Inventor Joseph Lincoln Komen

Joseph Lincoln Komen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7135557
    Abstract: A method of making a carboxylated carbohydrate is disclosed, cellulose being a preferred carbohydrate material. Carboxylated cellulose fibers can be produced whose fiber strength and degree of polymerization is not significantly sacrificed. The method involves the use of a catalytic amount of a hindered cyclic oxammonium compounds as a primary oxidant and chlorine dioxide as a secondary oxidant in an aqueous environment. The oxammonium compounds may be formed in situ from their corresponding amine, hydroxylamine, or nitroxyl compounds. The oxidized cellulose may be stabilized against D.P. loss and color reversion by further treatment with an oxidant such as sodium chlorite or a chlorine dioxide/hydrogen peroxide mixture. Alternatively it may be treated with a reducing agent such as sodium borohydride. In the case of cellulose the method results in a high percentage of carboxyl groups located at the fiber surface.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: November 14, 2006
    Assignee: Weyerhaeuser Company
    Inventors: S. Ananda Weerawarna, Joseph Lincoln Komen, Richard A. Jewell
  • Patent number: 7109325
    Abstract: A method of making a carboxylated carbohydrate is disclosed, cellulose being a preferred carbohydrate material. Carboxylated cellulose fibers can be produced whose fiber strength and degree of polymerization is not significantly sacrificed. The method involves the use of a catalytic amount of a hindered cyclic oxammonium compounds as a primary oxidant and chlorine dioxide as a secondary oxidant in an aqueous environment. The oxammonium compounds may be formed in situ from their corresponding amine, hydroxylamine, or nitroxyl compounds. The oxidized cellulose may be stabilized against D.P. loss and color reversion by further treatment with an oxidant such as sodium chlorite or a chlorine dioxide/hydrogen peroxide mixture. Alternatively it may be treated with a reducing agent such as sodium borohydride. In the case of cellulose the method results in a high percentage of carboxyl groups located at the fiber surface.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: September 19, 2006
    Assignee: Weyerhaeuser Company
    Inventors: Joseph Lincoln Komen, S. Ananda Weerawarna, Richard A. Jewell
  • Patent number: 6919447
    Abstract: A method of making a carboxylated carbohydrate is disclosed, cellulose being a preferred carbohydrate material. Carboxylated cellulose fibers can be produced whose fiber strength and degree of polymerization is not significantly sacrificed. The method involves the use of a catalytic amount of a hindered cyclic oxammonium compounds as a primary oxidant and chlorine dioxide as a secondary oxidant in an aqueous environment. The oxammonium compounds may be formed in situ from their corresponding amine, hydroxylamine, or nitroxyl compounds. The oxidized cellulose may be stabilized against D.P. loss and color reversion by further treatment with an oxidant such as sodium chlorite or a chlorine dioxide/hydrogen peroxide mixture. Alternatively it may be treated with a reducing agent such as sodium borohydride. In the case of cellulose the method results in a high percentage of carboxyl groups located at the fiber surface.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: July 19, 2005
    Assignee: Weyerhaeuser Company
    Inventors: Joseph Lincoln Komen, S. Ananda Weerawarna, Richard A. Jewell
  • Publication number: 20040266728
    Abstract: A method of making a carboxylated carbohydrate is disclosed, cellulose being a preferred carbohydrate material. Carboxylated cellulose fibers can be produced whose fiber strength and degree of polymerization is not significantly sacrificed. The method involves the use of a catalytic amount of a hindered cyclic oxammonium compounds as a primary oxidant and chlorine dioxide as a secondary oxidant in an aqueous environment. The oxammonium compounds may be formed in situ from their corresponding amine, hydroxylamine, or nitroxyl compounds. The oxidized cellulose may be stabilized against D.P. loss and color reversion by further treatment with an oxidant such as sodium chlorite or a chlorine dioxide/hydrogen peroxide mixture. Alternatively it may be treated with a reducing agent such as sodium borohydride. In the case of cellulose the method results in a high percentage of carboxyl groups located at the fiber surface.
    Type: Application
    Filed: August 30, 2004
    Publication date: December 30, 2004
    Inventors: Joseph Lincoln Komen, S. Ananda Weerawarna, Richard A. Jewell
  • Publication number: 20030083491
    Abstract: A method of making a carboxylated carbohydrate is disclosed, cellulose being a preferred carbohydrate material. Carboxylated cellulose fibers can be produced whose fiber strength and degree of polymerization is not significantly sacrificed. The method involves the use of a catalytic amount of a hindered cyclic oxammonium compounds as a primary oxidant and chlorine dioxide as a secondary oxidant in an aqueous environment. The oxammonium compounds may be formed in situ from their corresponding amine, hydroxylamine, or nitroxyl compounds. The oxidized cellulose may be stabilized against D.P. loss and color reversion by further treatment with an oxidant such as sodium chlorite or a chlorine dioxide/hydrogen peroxide mixture. Alternatively it may be treated with a reducing agent such as sodium borohydride. In the case of cellulose the method results in a high percentage of carboxyl groups located at the fiber surface.
    Type: Application
    Filed: June 6, 2001
    Publication date: May 1, 2003
    Inventors: Joseph Lincoln Komen, S. Ananda Weerawarna, Richard A. Jewell
  • Publication number: 20030051834
    Abstract: The invention is directed to a method of making a heat and light stable carboxylated cellulose fiber whose fiber strength and degree of polymerization is not significantly sacrificed. The method involves the use of a catalytic amount of a hindered cyclic oxammonium salt as a primary oxidant and a peracid and halide salt as a secondary oxidant in an aqueous environment. The oxammonium compounds may be formed in situ from their corresponding amine, hydroxylamine, and nitroxyl compounds. The oxidized cellulose is then stabilized against D.P. loss and color reversion by further treatment with an oxidant such as sodium chlorite, a chlorine dioxide/hydrogen peroxide mixture, or a peracid under acidic conditions. Alternatively it may be treated with a reducing agent such as sodium borohydride. The method results in a high percentage of carboxyl groups located at the fiber surface. The product is especially useful as a papermaking fiber where it contributes strength and has a higher attraction for cationic additives.
    Type: Application
    Filed: June 6, 2001
    Publication date: March 20, 2003
    Inventors: S. Ananda Weerawarna, Joseph Lincoln Komen, Richard A. Jewell
  • Patent number: 6524348
    Abstract: The invention is directed to a method of making carboxylated cellulose fibers whose fiber strength and degree of polymerization is not significantly sacrificed. The method involves the use of cyclic nitroxide free radical compounds as a primary oxidant and a hypohalite salt as a secondary oxidant in an aqueous environment. Preferably the oxidized cellulose is then stabilized against D.P. loss in alkaline environments and color reversion with a reducing agent such as sodium borohydride. Alternatively it may be treated with an oxidant such as sodium chlorite. The method results in a high percentage of carboxyl groups located at the fiber surface. The product is especially useful as a papermaking fiber where it contributes strength and has a higher attraction for cationic additives. The product is also useful as an additive to recycled fiber to increase strength. The method can be used to improve properties of either virgin or recycled fiber.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: February 25, 2003
    Assignee: Weyerhaeuser Company
    Inventors: Richard A. Jewell, Joseph Lincoln Komen, Bing Su, S. Ananda Weerawarna, Yong Li
  • Patent number: 6379494
    Abstract: The invention is directed to a method of making carboxylated cellulose fibers whose fiber strength and degree of polymerization is not significantly sacrificed. The method involves the use of TEMPO (2,2,6,6-tetramethylpiperidinyloxy free radical) as a primary oxidant and a hypohalite salt as a secondary oxidant in an aqueous environment. Preferably the oxidized cellulose is then stabilized against D.P. loss in alkaline environments and color reversion with a reducing agent such as sodium borohydride. Alternatively it may be treated with an oxidant such as sodium chlorite. The method results in a high percentage of carboxyl groups located at the fiber surface. The product is especially useful as a papermaking fiber where it contributes strength and has a higher attraction for cationic additives. The product is also useful as an additive to recycled fiber to increase strength. The method can be used to improve properties of either virgin or recycled fiber.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: April 30, 2002
    Assignee: Weyerhaeuser Company
    Inventors: Richard A. Jewell, Joseph Lincoln Komen, Yong Li, Bing Su