Patents by Inventor Joseph M. Ingino

Joseph M. Ingino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9201441
    Abstract: The present disclosure provides, in one embodiment, a method of shunting a power supply to reduce output ripple. The method includes determining at least one performance parameter of a DC/DC converter circuit; generating a first reference signal, wherein the first reference signal is based on the performance parameter; comparing the first reference signal to the performance parameter; and generating a shunt current from an input power source to an output node of the DC/DC converter circuit based on, at least in part, the comparison of the performance parameter and the first reference signal.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: December 1, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joseph M. Ingino, Poojan Wagh
  • Patent number: 9054937
    Abstract: A system according to one embodiment includes a digital data modulator configured to generate encoded symbols; an envelope detector configured to receive the encoded symbols and to estimate transmission power information associated with the encoded symbols; a peak detector configured to receive the transmission power information, detect a peak transmission power from two or more sequential data points of the received transmission power information, and to generate a power regulation signal representative of the detected peak transmission power; and a digital to analog converter (DAC) configured to receive the power regulation signal and to provide a reference voltage to a power supply associated with an RF amplifier.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 9, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Pallab Midya, Joseph M. Ingino, Jr.
  • Publication number: 20140167710
    Abstract: The present disclosure provides, in one embodiment, a method of shunting a power supply to reduce output ripple. The method includes determining at least one performance parameter of a DC/DC converter circuit; generating a first reference signal, wherein the first reference signal is based on the performance parameter; comparing the first reference signal to the performance parameter; and generating a shunt current from an input power source to an output node of the DC/DC converter circuit based on, at least in part, the comparison of the performance parameter and the first reference signal.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: FAIRCHILD SEMICONDUCTOR CORPORATION
    Inventors: Joseph M. Ingino, JR., Poojan Wagh
  • Publication number: 20120275544
    Abstract: A system according to one embodiment includes a digital data modulator configured to generate encoded symbols; an envelope detector configured to receive the encoded symbols and to estimate transmission power information associated with the encoded symbols; a peak detector configured to receive the transmission power information, detect a peak transmission power from two or more sequential data points of the received transmission power information, and to generate a power regulation signal representative of the detected peak transmission power; and a digital to analog converter (DAC) configured to receive the power regulation signal and to provide a reference voltage to a power supply associated with an RF amplifier.
    Type: Application
    Filed: December 2, 2011
    Publication date: November 1, 2012
    Inventors: Pallab Midya, Joseph M. Ingino, JR.
  • Patent number: 8126422
    Abstract: A receiver (300) comprises an antenna input (301), a filter (302), a voltage-to-current converter (303), a down frequency conversion mixer (304), and a current-to-voltage converter (305). The antenna input operably couples to an antenna. The filter has a filter input that operably couples to the antenna input and can further have a filter output. The voltage-to-current converter has an input that is operably coupled to the filter output and can further have a voltage-to-current converter output. The down frequency conversion mixer has a mixer input that is operably coupled to the voltage-to-current converter output and can further have a mixer output. And the current-to-voltage converter has an input that is operably coupled to the mixer output and can further have a current-to-voltage converter output. By one approach, this current-to-voltage converter comprises an amplifier having a current gain of substantially unity or less.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: February 28, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Lawrence E. Connell, Joseph P. Golat, Joseph M. Ingino
  • Publication number: 20090258623
    Abstract: A receiver (300) comprises an antenna input (301), a filter (302), a voltage-to-current converter (303), a down frequency conversion mixer (304), and a current-to-voltage converter (305). The antenna input operably couples to an antenna. The filter has a filter input that operably couples to the antenna input and can further have a filter output. The voltage-to-current converter has an input that is operably coupled to the filter output and can further have a voltage-to-current converter output. The down frequency conversion mixer has a mixer input that is operably coupled to the voltage-to-current converter output and can further have a mixer output. And the current-to-voltage converter has an input that is operably coupled to the mixer output and can further have a current-to-voltage converter output. By one approach, this current-to-voltage converter comprises an amplifier having a current gain of substantially unity or less.
    Type: Application
    Filed: April 15, 2008
    Publication date: October 15, 2009
    Inventors: LAWRENCE E. CONNELL, Joseph P. Golat, Joseph M. Ingino
  • Patent number: 7302505
    Abstract: A receiver multi-protocol interface includes a wide bandwidth amplifier, a data sampling module, and a clocking module. The wide bandwidth amplifier amplifies a first formatted input signal or a second formatted input signal to produce an amplified input signal. The data sampling module converts the amplified input signal into a first data stream in accordance with at least one first sampling clock signal when the interface is configured in the first mode and to converts the amplified input signal into a second data stream in accordance with at least a second sampling clock signal when the interface is in a second mode. The clocking module generates the first sampling clock signals from a reference clock when the multi-protocol interface is in a first operational mode and generates the second sampling clock signals based on the reference clock when the interface is in the second operational mode.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: November 27, 2007
    Assignee: Broadcom Corporation
    Inventors: Joseph M Ingino, Jr., Hung-Sung Li
  • Patent number: 7132880
    Abstract: A voltage regulator may include one or more features for generating high PSRR. For example, source follower devices may be included in the voltage regulator for providing current sources for the output voltage nodes. The source followers may be sensitive to power supply noise at the gate terminal. Filters are included on the gate terminals to filter the power supply noise, thus reducing the noise at the gate terminals. As another example, the voltage regulator may employ current sources on the output voltage nodes which produce current inversely proportional to the current drawn by the load. In one embodiment, the voltage regulator may include a power control circuit used to provide overvoltage protection during power up. The power control circuit provides a voltage during power up, and ceases providing the voltage after a time interval so that the circuit may operate.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: November 7, 2006
    Assignee: Broadcom Corporation
    Inventor: Joseph M. Ingino, Jr.
  • Patent number: 6914476
    Abstract: A voltage regulator may include one or more features for generating high PSRR. For example, source follower devices may be included in the voltage regulator for providing current sources for the output voltage nodes. The source followers may be sensitive to power supply noise at the gate terminal. Filters are included on the gate terminals to filter the power supply noise, thus reducing the noise at the gate terminals. As another example, the voltage regulator may employ current sources on the output voltage nodes which produce current inversely proportional to the current drawn by the load. In one embodiment, the voltage regulator may include a power control circuit used to provide overvoltage protection during power up. The power control circuit provides a voltage during power up, and ceases providing the voltage after a time interval so that the circuit may operate.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: July 5, 2005
    Assignee: Broadcom Corporation
    Inventor: Joseph M. Ingino, Jr.
  • Patent number: 6842079
    Abstract: A VCO for a PLL may include a ring oscillator having a power supply controlled in response to the VCO's control voltage input and an inverter having an input coupled to the ring oscillator's output and also supplied with a power supply controlled by the control voltage input. Together, the output of the ring oscillator and the output of the inverter may closely approximate a differential signal. The VCO may include an amplifier for amplifying a differential input to an output in the voltage domain of the system including the PLL. The output of the ring oscillator may be used as an input to the amplifier, and the output of the inverter may be used as the other input. The power supply terminals of the ring oscillator and the inverter may be coupled to outputs of a current mirror. In one implementation, the current mirror may not be cascoded.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: January 11, 2005
    Assignee: Broadcom Corporation
    Inventor: Joseph M. Ingino, Jr.
  • Patent number: 6747497
    Abstract: A PLL may include a voltage regulator for providing a regulated voltage to one or more PLL components (e.g. a charge pump, a voltage controlled oscillator, etc.). The PLL components may be noise sensitive components, and the regulated voltage may reduce noise received from the power supply. Additionally, a level shifter may be coupled between the PLL components and a phase/frequency detector. The level shifter may be supplied by the regulated voltage from the voltage detector. In another implementation, a PLL may include a programmable charge pump and a programmable loop filter. For example, the reference current to the charge pump may be changed, thus changing the rate at which the charge pump can change an output voltage (the control voltage to a voltage controlled oscillator in the PLL). The loop filter components may be changed to change the frequency ranges filtered by the loop filter.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: June 8, 2004
    Assignee: Broadcom Corporation
    Inventor: Joseph M Ingino, Jr.
  • Publication number: 20040095701
    Abstract: A voltage regulator may include one or more features for generating high PSRR. For example, source follower devices may be included in the voltage regulator for providing current sources for the output voltage nodes. The source followers may be sensitive to power supply noise at the gate terminal. Filters are included on the gate terminals to filter the power supply noise, thus reducing the noise at the gate terminals. As another example, the voltage regulator may employ current sources on the output voltage nodes which produce current inversely proportional to the current drawn by the load. In one embodiment, the voltage regulator may include a power control circuit used to provide overvoltage protection during power up. The power control circuit provides a voltage during power up, and ceases providing the voltage after a time interval so that the circuit may operate.
    Type: Application
    Filed: July 9, 2003
    Publication date: May 20, 2004
    Applicant: Broadcom Corporation
    Inventor: Joseph M. Ingino
  • Publication number: 20030210099
    Abstract: A VCO for a PLL may include a ring oscillator having a power supply controlled in response to the VCO's control voltage input and an inverter having an input coupled to the ring oscillator's output and also supplied with a power supply controlled by the control voltage input. Together, the output of the ring oscillator and the output of the inverter may closely approximate a differential signal. The VCO may include an amplifier for amplifying a differential input to an output in the voltage domain of the system including the PLL. The output of the ring oscillator may be used as an input to the amplifier, and the output of the inverter may be used as the other input. The power supply terminals of the ring oscillator and the inverter may be coupled to outputs of a current mirror. In one implementation, the current mirror may not be cascoded.
    Type: Application
    Filed: April 1, 2003
    Publication date: November 13, 2003
    Applicant: Broadcom Corp.
    Inventor: Joseph M. Ingino
  • Patent number: 6621675
    Abstract: A voltage regulator may include one or more features for generating high PSRR. For example, source follower devices may be included in the voltage regulator for providing current sources for the output voltage nodes. The source followers may be sensitive to power supply noise at the gate terminal. Filters are included on the gate terminals to filter the power supply noise, thus reducing the noise at the gate terminals. As another example, the voltage regulator may employ current sources on the output voltage nodes which produce current inversely proportional to the current drawn by the load. In one embodiment, the voltage regulator may include a power control circuit used to provide overvoltage protection during power up. The power control circuit provides a voltage during power up, and ceases providing the voltage after a time interval so that the circuit may operate.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: September 16, 2003
    Assignee: Broadcom Corporation
    Inventor: Joseph M. Ingino, Jr.
  • Patent number: 6597217
    Abstract: A charge pump includes at least one switching transistor for switching current on or off in response to an up or down signal, a pair of transistors (one coupled to the source and the other to the drain of the switching transistor) each having its source and drain shorted and coupled to receive a complement of the signal on the gate terminal of the switching transistor on their gate terminals, and a fourth transistor coupled to the drain of the switching transistor and a power supply. The pair of transistors are activated concurrent with the deactivation of the switching transistor. The fourth transistor may provide for active shutoff of a current transistor being switched by the switching transistor, by actively charging the source of the current transistor to a voltage which is not exceeded by the gate terminal of the current transistor.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: July 22, 2003
    Assignee: Broadcom Corporation
    Inventor: Joseph M. Ingino, Jr.
  • Patent number: 6566970
    Abstract: A VCO for a PLL may include a ring oscillator having a power supply controlled in response to the VCO's control voltage input and an inverter having an input coupled to the ring oscillator's output and also supplied with a power supply controlled by the control voltage input. Together, the output of the ring oscillator and the output of the inverter may closely approximate a differential signal. The VCO may include an amplifier for amplifying a differential input to an output in the voltage domain of the system including the PLL. The output of the ring oscillator may be used as an input to the amplifier, and the output of the inverter may be used as the other input. The power supply terminals of the ring oscillator and the inverter may be coupled to outputs of a current mirror. In one implementation, the current mirror may not be cascoded.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: May 20, 2003
    Assignee: Broadcom Corporation
    Inventor: Joseph M. Ingino, Jr.
  • Publication number: 20030020526
    Abstract: A charge pump includes at least one switching transistor for switching current on or off in response to an up or down signal, a pair of transistors (one coupled to the source and the other to the drain of the switching transistor) each having its source and drain shorted and coupled to receive a complement of the signal on the gate terminal of the switching transistor on their gate terminals, and a fourth transistor coupled to the drain of the switching transistor and a power supply. The pair of transistors are activated concurrent with the deactivation of the switching transistor. The fourth transistor may provide for active shutoff of a current transistor being switched by the switching transistor, by actively charging the source of the current transistor to a voltage which is not exceeded by the gate terminal of the current transistor.
    Type: Application
    Filed: September 24, 2002
    Publication date: January 30, 2003
    Applicant: Broadcom Corporation
    Inventor: Joseph M. Ingino
  • Patent number: 6483358
    Abstract: A charge pump includes at least one switching transistor for switching current on or off in response to an up or down signal, a pair of transistors (one coupled to the source and the other to the drain of the switching transistor) each having its source and drain shorted and coupled to receive a complement of the signal on the gate terminal of the switching transistor on their gate terminals, and a fourth transistor coupled to the drain of the switching transistor and a power supply. The pair of transistors are activated concurrent with the deactivation of the switching transistor. The fourth transistor may provide for active shutoff of a current transistor being switched by the switching transistor, by actively charging the source of the current transistor to a voltage which is not exceeded by the gate terminal of the current transistor.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: November 19, 2002
    Assignee: Broadcom Corporation
    Inventor: Joseph M. Ingino, Jr.
  • Publication number: 20020167367
    Abstract: A PLL may include a voltage regulator for providing a regulated voltage to one or more PLL components (e.g. a charge pump, a voltage controlled oscillator, etc.). The PLL components may be noise sensitive components, and the regulated voltage may reduce noise received from the power supply. Additionally, a level shifter may be coupled between the PLL components and a phase/frequency detector. The level shifter may be supplied by the regulated voltage from the voltage detector. In another implementation, a PLL may include a programmable charge pump and a programmable loop filter. For example, the reference current to the charge pump may be changed, thus changing the rate at which the charge pump can change an output voltage (the control voltage to a voltage controlled oscillator in the PLL). The loop filter components may be changed to change the frequency ranges filtered by the loop filter.
    Type: Application
    Filed: July 9, 2002
    Publication date: November 14, 2002
    Applicant: Broadcom Corporation
    Inventor: Joseph M. Ingino
  • Publication number: 20020149433
    Abstract: A VCO for a PLL may include a ring oscillator having a power supply controlled in response to the VCO's control voltage input and an inverter having an input coupled to the ring oscillator's output and also supplied with a power supply controlled by the control voltage input. Together, the output of the ring oscillator and the output of the inverter may closely approximate a differential signal. The VCO may include an amplifier for amplifying a differential input to an output in the voltage domain of the system including the PLL. The output of the ring oscillator may be used as an input to the amplifier, and the output of the inverter may be used as the other input. The power supply terminals of the ring oscillator and the inverter may be coupled to outputs of a current mirror. In one implementation, the current mirror may not be cascoded.
    Type: Application
    Filed: April 11, 2001
    Publication date: October 17, 2002
    Inventor: Joseph M. Ingino