Patents by Inventor Joseph M. Norbeck

Joseph M. Norbeck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9493721
    Abstract: A method for producing high levels of methane based on a combination of steam hydrogasification and a shift reactor is provided using carbonaceous material. Hydrogen produced by the shift reactor can be recycled back into the steam hydrogasifier.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: November 15, 2016
    Assignee: The Regents of the University of California
    Inventors: Arun S K Raju, Chan Seung Park, Joseph M. Norbeck
  • Patent number: 8771388
    Abstract: A method for producing high levels of methane based on a combination of steam hydrogasification and a shift reactor is provided. Hydrogen produced by the shift reactor can be recycled back into the steam hydrogasifier.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: July 8, 2014
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Chan Seung Park, Arun S K Raju
  • Patent number: 8741000
    Abstract: An energy efficient process for converting biomass into a higher carbon content, high energy density slurry. Water and biomass are mixed at a temperature and under a pressure that are much lower than in prior processes, but under a non-oxidative gas, which enables a stable slurry to be obtained containing up to 60% solids by weight, 20-40% carbon by weight, in the slurry. The temperature is nominally about 200° C. under non-oxidative gas pressure of about 150 psi, conditions that are substantially less stringent than those required by the prior art. In another embodiment, the biomass water slurry can be mixed with a coal water slurry to further optimize the carbon content and pumpability of the biomass slurry.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: June 3, 2014
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Chan Seung Park, Andres Aguirre
  • Patent number: 8603430
    Abstract: Systems and methods for processing a methane rich producer gas are provided in which the producer gas is preferably produced via steam-hydrogasification. The product stream from the steam-hydrogasification is then subjected to autothermal reforming, steam is removed after the reforming step via condensation, and sulfur impurities are subsequently eliminated. In most preferred aspects, the process pressure is substantially maintained throughout all steps, typically in a range of 150 psi to 500 psi.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: December 10, 2013
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Chan Seung Park, Arun Sk Raju, Kiseok Kim
  • Patent number: 8435448
    Abstract: An assembly and method for gas analysis. The assembly comprises a catalyst compartment for catalytically reacting a component of a gas sample, producing one or more gas species as products. A product compartment receives the gas species, and a sensing element within the compartment senses the amount of one or more of the gas species. This amount is compared to the amount of the same gas species present in a reference compartment containing a non-catalyzed gas sample, providing the amount of the gas species produced by catalysis. Using this value, the content of the gas component in the gas sample is calculated based upon the stoichiometry of the catalyzed reaction. In preferred embodiments, the gas for analysis is a process gas for fuel production, and the catalyst is a high temperature shift catalyst that catalyzes the reaction of carbon monoxide and water into hydrogen and carbon dioxide.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: May 7, 2013
    Assignee: The Regents of the University of California
    Inventors: Chan Seung Park, Colin E. Hackett, Joseph M. Norbeck
  • Patent number: 8268026
    Abstract: A method for controlling the synthesis gas composition obtained from a steam methane reformer (SMR) that obtains its feedstock as product gas directly from a steam hydro-gasification reactor SHR). The method allows control of the H2/CO syngas ratio by adjusting the hydrogen feed and the water content of feedstock into a steam hydro-gasification reactor that supplies the SMR. The steam and methane rich product gas of the SHR is generated by means of hydro-gasification of a slurry of carbonaceous material and water. The mass percentages of the product stream at each stage of the process are calculated using a modeling program, such as the ASPEN PLUS™ equilibrium process. By varying the parameters of solid to water ratio and hydrogen to carbon ratio, a sensitivity analysis can be performed that enables one determine the optimum composition of the slurry feedstock to the SHR to obtain a desired syngas ratio output of the SMR.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: September 18, 2012
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Chan Seung Park, Arun Sk Raju
  • Publication number: 20120222353
    Abstract: A method for producing high levels of methane based on a combination of steam hydrogasification and a shift reactor is provided using carbonaceous material. Hydrogen produced by the shift reactor can be recycled back into the steam hydrogasifier.
    Type: Application
    Filed: September 22, 2010
    Publication date: September 6, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun SK Raju, Chan Seung Park, Joseph M. Norbeck
  • Publication number: 20120210631
    Abstract: An energy efficient process for converting biomass into a higher carbon content, high energy density slurry. Water and biomass are mixed at a temperature and under a pressure that are much lower than in prior processes, but under a non-oxidative gas, which enables a stable slurry to be obtained containing up to 60% solids by weight, 20-40% carbon by weight, in the slurry. The temperature is nominally about 200° C. under non-oxidative gas pressure of about 150 psi, conditions that are substantially less stringent than those required by the prior art. In another embodiment, the biomass water slurry can be mixed with a coal water slurry to further optimize the carbon content and pumpability of the biomass shiny.
    Type: Application
    Filed: May 9, 2012
    Publication date: August 23, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Joseph M. Norbeck, Chan Seung Park, Andres Aguirre
  • Patent number: 8143319
    Abstract: A method and apparatus for converting carbonaceous material to a stream of carbon rich gas, comprising heating a slurry feed containing the carbonaceous material in a hydrogasification process using hydrogen and steam, at a temperature and pressure sufficient to generate a methane and carbon monoxide rich stream in which the conversion time in the process is between 5 and 45 seconds. In particular embodiments, the slurry feed containing the carbonaceous material is fed, along with hydrogen, to a kiln type reactor before being fed to the fluidized bed reactor. Apparatus is provided comprising a kiln type reactor, a slurry pump connected to an input of the kiln type reactor, means for connecting a source of hydrogen to an input of the kiln type reactor; a fluidized bed reactor connected to receive output of the kiln type reactor for processing at a fluidizing zone, and a source of steam and a source of hydrogen connected to the fluidized bed reactor below the fluidizing zone.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: March 27, 2012
    Assignee: The Regents of the University of California
    Inventors: Chan Seung Park, Joseph M. Norbeck
  • Patent number: 8118894
    Abstract: An energy efficient process for converting biomass into a higher carbon content, high energy density slurry. Water and biomass are mixed at a temperature and under a pressure that are much lower than in prior processes, but under a non-oxidative gas, which enables a stable slurry to be obtained containing up to 60% solids by weight, 20-40% carbon by weight, in the slurry. The temperature is nominally about 200° C. under non-oxidative gas pressure of about 150 psi, conditions that are substantially less stringent than those required by the prior art. In another embodiment, the biomass water slurry can be mixed with a coal water slurry to further optimize the carbon content and pumpability of the biomass slurry.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: February 21, 2012
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Chan Seung Park, Andres Aguirre
  • Publication number: 20110126458
    Abstract: A method for producing high levels of methane based on a combination of steam hydrogasification and a shift reactor is provided. Hydrogen produced by the shift reactor can be recycled back into the steam hydrogasifier.
    Type: Application
    Filed: May 19, 2010
    Publication date: June 2, 2011
    Inventors: JOSEPH M. NORBECK, CHAN SEUNG PARK, ARUN SK RAJU
  • Patent number: 7897649
    Abstract: An improved, economical alternative method to supply steam and methane to a steam methane reformer (SMR) is accomplished by a combination of procedures, wherein product gas from a steam hydro-gasification reactor (SHR) is used as the feedstock for the SMR by removing impurities from the product stream from the SHR with a gas cleanup unit that operates substantially at process pressures and at a temperature above the boiling point of water at the process pressure, is located between the SHR and SMR.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: March 1, 2011
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Chan Seung Park
  • Publication number: 20100285576
    Abstract: This invention involves the conversion of coal-algae or resid-algae commingled slurry feedstock into a high methane content product gas using a steam hydrogasification process. This gas is then reformed into synthesis gas (H2 and CO). Excess H2 from the synthesis gas is separated and recycled back to the gasifier. The synthesis gas is converted into a liquid fuel such as Fischer-Tropsch diesel. The CO2 emissions from the steam hydrogasification process can be captured and used to grow the algae, which can subsequently be commingled with coal or reside to form slurry feedstocks for the hydrogasifier. Thus, this process eliminates CO2 emissions from the conversion plant.
    Type: Application
    Filed: April 23, 2010
    Publication date: November 11, 2010
    Inventors: Joseph M. Norbeck, Chan Seung Park, Arun SK Raju
  • Publication number: 20100197035
    Abstract: An assembly and method for gas analysis. The assembly comprises a catalyst compartment for catalytically reacting a component of a gas sample, producing one or more gas species as products. A product compartment receives the gas species, and a sensing element within the compartment senses the amount of one or more of the gas species. This amount is compared to the amount of the same gas species present in a reference compartment containing a non-catalyzed gas sample, providing the amount of the gas species produced by catalysis. Using this value, the content of the gas component in the gas sample is calculated based upon the stoichiometry of the catalyzed reaction. In preferred embodiments, the gas for analysis is a process gas for fuel production, and the catalyst is a high temperature shift catalyst that catalyzes the reaction of carbon monoxide and water into hydrogen and carbon dioxide.
    Type: Application
    Filed: April 8, 2010
    Publication date: August 5, 2010
    Inventors: Chan Seung Park, Colin E. Hackett, Nora A. Hackett, Joseph M. Norbeck
  • Patent number: 7754491
    Abstract: An assembly and method for gas analysis. The assembly comprises a catalyst compartment for catalytically reacting a component of a gas sample, producing one or more gas species as products. A product compartment receives the gas species, and a sensing element within the compartment senses the amount of one or more of the gas species. This amount is compared to the amount of the same gas species present in a reference compartment containing a non-catalyzed gas sample, providing the amount of the gas species produced by catalysis. Using this value, the content of the gas component in the gas sample is calculated based upon the stoichiometry of the catalyzed reaction. In preferred embodiments, the gas for analysis is a process gas for fuel production, and the catalyst is a high temperature shift catalyst that catalyzes the reaction of carbon monoxide and water into hydrogen and carbon dioxide.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: July 13, 2010
    Assignee: The Regents of the University of Calif.
    Inventors: Chan Seung Park, Colin E. Hackett, Nora A. Hackett, legal representative, Joseph M. Norbeck
  • Patent number: 7619012
    Abstract: A method and apparatus for converting carbonaceous material to a stream of methane and carbon monoxide rich gas by heating the carbonaceous material in a fluidized bed reactor using hydrogen, as fluidizing medium, and using steam, under reducing conditions at a temperature and pressure sufficient to generate a stream of methane and carbon monoxide rich gas but at a temperature low enough and/or at a pressure high enough to enable the carbonaceous material to be fluidized by the hydrogen. In particular embodiments, the carbonaceous material is fed as a slurry feed, along with hydrogen, to a kiln type reactor before being fed to the fluidized bed reactor.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: November 17, 2009
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Chan Seung Park, Surinder P. Singh
  • Publication number: 20090221721
    Abstract: An improved, economical alternative method to supply steam and methane to a steam methane reformer (SMR) is accomplished by a combination of procedures, wherein product gas from a steam hydro-gasification reactor (SHR) is used as the feedstock for the SMR by removing impurities from the product stream from the SHR with a combination of autothermal reforming, condensation removal and gas cleanup procedures that operates substantially at process pressures and at a temperature above the boiling point of water at the process pressure, is located between the SHR and SMR. In another embodiment, a method is provided for controlling the H2/CO syngas ratio obtained from a steam methane reformer (SMR) by adjusting the hydrogen feed and the water content of feedstock into a steam hydro-gasification reactor that supplies the SMR.
    Type: Application
    Filed: March 9, 2009
    Publication date: September 3, 2009
    Inventors: Joseph M. Norbeck, Chan Seung Park, Arun Sk Raju, Kiseok Kim
  • Publication number: 20090094892
    Abstract: An energy efficient process for converting biomass into a higher carbon content, high energy density slurry. Water and biomass are mixed at a temperature and under a pressure that are much lower than in prior processes, but under a non-oxidative gas, which enables a stable slurry to be obtained containing up to 60% solids by weight, 20-40% carbon by weight, in the slurry. The temperature is nominally about 200° C. under non-oxidative gas pressure of about 150 psi, conditions that are substantially less stringent than those required by the prior art. In another embodiment, the biomass water slurry can be mixed with a coal water slurry to further optimize the carbon content and pumpability of the biomass slurry.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 16, 2009
    Inventors: Joseph M. Norbeck, Chan Seung Park, Andres Aguirre
  • Patent number: 7500997
    Abstract: A process and apparatus for producing a synthesis gas for use as a gaseous fuel or as feed into a Fischer-Tropsch reactor to produce a liquid fuel in a substantially self-sustaining process. In one embodiment, a slurry of carbonaceous material in water, and hydrogen from an internal source, are fed into a hydro-gasification reactor to generate methane rich producer gases which are fed into a steam pyrolytic reformer to generate synthesis gas comprising hydrogen and carbon monoxide. A portion of the hydrogen is used as the internal hydrogen source. The remaining synthesis gas is either used as fuel to produce electricity and/or process heat or is fed into a Fischer-Tropsch reactor to produce liquid fuel. In another embodiment of the invention, carbonaceous material can be heated simultaneously in the presence of both hydrogen and steam to undergo steam pyrolysis and hydro-gasification in a single step.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: March 10, 2009
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Colin E. Hackett
  • Publication number: 20080312348
    Abstract: A method and apparatus for converting carbonaceous material to a stream of carbon rich gas, comprising heating a slurry feed containing the carbonaceous material in a hydrogasification process using hydrogen and steam, at a temperature and pressure sufficient to generate a methane and carbon monoxide rich stream in which the conversion time in the process is between 5 and 45 seconds. In particular embodiments, the slurry feed containing the carbonaceous material is fed, along with hydrogen, to a kiln type reactor before being fed to the fluidized bed reactor. Apparatus is provided comprising a kiln type reactor, a slurry pump connected to an input of the kiln type reactor, means for connecting a source of hydrogen to an input of the kiln type reactor; a fluidized bed reactor connected to receive output of the kiln type reactor for processing at a fluidizing zone, and a source of steam and a source of hydrogen connected to the fluidized bed reactor below the fluidizing zone.
    Type: Application
    Filed: July 16, 2008
    Publication date: December 18, 2008
    Inventors: Chan Seung Park, Joseph M. Norbeck