Patents by Inventor Joseph M. Owens

Joseph M. Owens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11561276
    Abstract: A bi-static optical system utilizing a separate transmit and receive optical train that are identically steerable in azimuth-over-elevation fashion while accommodating an autoboresight technique and function. Further provided may be a common elevation assembly with two opposite-facing elevation fold mirrors on either side that are controlled by the same motor assembly allowing for common elevation control without overlapping or combining the apertures.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: January 24, 2023
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, III, Jeffrey L. Jew, Ian B. Murray
  • Publication number: 20220365162
    Abstract: A bi-static optical system utilizing a separate transmit and receive optical train that are identically steerable in azimuth-over-elevation fashion while accommodating an autoboresight technique and function. Further provided may be a common elevation assembly with two opposite-facing elevation fold mirrors on either side that are controlled by the same motor assembly allowing for common elevation control without overlapping or combining the apertures.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 17, 2022
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, III, Jeffrey L. Jew, Ian B. Murray
  • Patent number: 9534952
    Abstract: Techniques are disclosed for monitoring parameters in a high power fiber laser or amplifier system without adding a tap coupler or increasing fiber length. In some embodiments, a cladding stripper is used to draw off a small percentage of light propagating in the cladding to an integrated signal parameter monitor. Parameters at one or more specific wavelengths (e.g., pump signal wavelength, signal/core signal wavelength, etc) can be monitored. In some such cases, filters can be used to allow for selective passing of signal wavelength to be monitored to a corresponding parameter monitor. The filters can be external or may be integrated into a parameter monitor package that includes cladding stripper with integrated parameter monitor. Other parameters of interest (e.g., phase, wavelength) can also be monitored, in addition to, or as an alternative to power. Numerous configurations and variations will be apparent in light of this disclosure (e.g., system-on-chip).
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: January 3, 2017
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Daniel J. Creeden, Joseph M. Owen
  • Patent number: 9533911
    Abstract: A method and apparatus for applying a mid-IR graded microstructure to the end of a chalcogenide glass optical fiber are presented herein. The method and apparatus transfer a microstructure from a negative imprint on a nickel shim to a chalcogenide glass fiber tip with minimal shape distortion and minimal damage-threshold impact resulting in large gains in anti-reflective properties.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: January 3, 2017
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, David P. Kelly, Michael E. Chadwick
  • Patent number: 9407059
    Abstract: Techniques and architecture are disclosed for providing a laser system. In one specific example embodiment, the system includes a thulium-doped fiber laser coupled by silica glass fiber to a remote optical converter (ROC) including a Ho:YAG laser and, optionally, an optical parametric oscillator (OPO) utilizing in germanium phosphide (ZnGeP2; ZGP) or orientation-patterned gallium arsenide (OPGaAs). The fiber laser may emit a low-peak-power, continuous wave pump signal that pumps the Ho:YAG laser, which in turn emits a higher-peak-power, pulsed signal. When included, the OPO can be used to convert the resultant, pulsed signal to a longer wavelength (e.g., about 2-5 ?m, or greater). In some cases, distributed architecture and reduced weight/bulk may be realized while eliminating the need to actively cool the ROC for operation, for example, over a broad temperature range (e.g., ?55-125° C.). Also, methods of preparing high-peak-power, pulsed signals using such systems are disclosed.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: August 2, 2016
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Leonard A. Pomeranz, Joseph M. Owen, Michael J. Shaw, David P. Kelly, Philip R. Staver, Peter A. Budni, John C. Wikman
  • Patent number: 9225144
    Abstract: Techniques and structure are disclosed for implementing a spatial walk-off compensation mechanism having an integral tilt function. In some embodiments, the mechanism may comprise a tilt-ball mount having an integrated walk-off compensation medium. In some embodiments, the mechanism may be configured to receive an output beam from a non-linear converter (e.g., optical parametric oscillator or OPO) implementing a non-linear medium comprising a bi-refringent material (e.g., zinc germanium phosphide, or ZnGeP2; cadmium silicon phosphide, or CdSiP2). In some embodiments, the walk-off compensation medium may comprise the same material and/or have the same cut as the non-linear medium. In some embodiments, the mechanism may be manually and/or mechanically adjusted/repositioned to reduce beam walk-off and/or to more precisely direct the beam. In some embodiments, the mechanism may be implemented in mid-infrared (MIR) applications. Numerous configurations and variations will be apparent in light of this disclosure.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: December 29, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, Nathan E. Rines
  • Publication number: 20150315063
    Abstract: A method and apparatus for applying a mid-IR graded microstructure to the end of a chalcogenide glass optical fiber are presented herein. The method and apparatus transfer a microstructure from a negative imprint on a nickel shim to a chalcogenide glass fiber tip with minimal shape distortion and minimal damage-threshold impact resulting in large gains in anti-reflective properties.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 5, 2015
    Inventors: Joseph M. Owen, David P. Kelly, Michael E. Chadwick
  • Patent number: 9153932
    Abstract: Techniques and structure are disclosed for implementing a spatial walk-off compensation mechanism having an integral tilt function. In some embodiments, the mechanism may comprise a tilt-ball mount having an integrated walk-off compensation medium. In some embodiments, the mechanism may be configured to receive an output beam from a non-linear converter (e.g., optical parametric oscillator or OPO) implementing a non-linear medium comprising a bi-refringent material (e.g., zinc germanium phosphide, or ZnGeP2; cadmium silicon phosphide, or CdSiP2). In some embodiments, the walk-off compensation medium may comprise the same material and/or have the same cut as the non-linear medium. In some embodiments, the mechanism may he manually and/or mechanically adjusted/repositioned to reduce beam walk-off and/or to more precisely direct the beam. In some embodiments, the mechanism may be implemented in mid-infrared (MIR) applications. Numerous configurations and variations will he apparent in light of this disclosure.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: October 6, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, Nathan E. Rines
  • Publication number: 20150222081
    Abstract: Techniques and structure are disclosed for implementing a spatial walk-off compensation mechanism having an integral tilt function. In some embodiments, the mechanism may comprise a tilt-ball mount having an integrated walk-off compensation medium. In some embodiments, the mechanism may be configured to receive an output beam from a non-linear converter (e.g., optical parametric oscillator or OPO) implementing a non-linear medium comprising a bi-refringent material (e.g., zinc germanium phosphide, or ZaGeP2; cadmium silicon phosphide, or CdSiP2). In some embodiments, the walk-off compensation medium may comprise the same material and/or have the same cut as the non-linear medium. In some embodiments, the mechanism may be manually and/or mechanically adjusted/repositioned to reduce beam walk-off and/or to more precisely direct the beam. In some embodiments, the mechanism may be implemented in mid-infrared (MIR) applications. Numerous configurations and variations will be apparent in light of this disclosure.
    Type: Application
    Filed: April 16, 2015
    Publication date: August 6, 2015
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. OWEN, Nathan E. RINES
  • Publication number: 20150222080
    Abstract: Techniques and structure are disclosed for implementing a spatial walk-off compensation mechanism having an integral tilt function. In some embodiments, the mechanism may comprise a tilt-ball mount having an integrated walk-off compensation medium. In some embodiments, the mechanism may be configured to receive an output beam from a non-linear converter (e.g., optical parametric oscillator or OPO) implementing a non-linear medium comprising a bi-refringent material (e.g., zinc germanium phosphide, or ZnGeP2; cadmium silicon phosphide, or CdSiP2). In some embodiments, the walk-off compensation medium may comprise the same material and/or have the same cut as the non-linear medium. In some embodiments, the mechanism may be manually and/or mechanically adjusted/repositioned to reduce beam walk-off and/or to more precisely direct the beam. In some embodiments, the mechanism may be implemented in mid-infrared (MIR) applications. Numerous configurations and variations will be apparent in light of this disclosure.
    Type: Application
    Filed: April 16, 2015
    Publication date: August 6, 2015
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. OWEN, Nathan E. RINES
  • Publication number: 20150171590
    Abstract: Techniques and architecture are disclosed for providing a laser system. In one specific example embodiment, the system includes a thulium-doped fiber laser coupled by silica glass fiber to a remote optical converter (ROC) including a Ho:YAG laser and, optionally, an optical parametric oscillator (OPO) utilizing in germanium phosphide (ZnGeP2, ZGP) or orientation-patterned gallium arsenide (OPGaAs). The fiber laser may emit a low-peak-power, continuous wave pump signal that pumps the Ho:YAG laser, which in turn emits a higher-peak-power, pulsed signal. When included, the OPO can be used to convert the resultant, pulsed signal to a longer wavelength (e.g., about 2-5 ?m, or greater). In some cases, distributed architecture and reduced weight/bulk may be realized while eliminating the need to actively cool the ROC for operation, for example, over a broad temperature range (e.g., ?55-125° C.). Also, methods of preparing high-peak-power, pulsed signals using such systems are disclosed.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 18, 2015
    Inventors: Leonard A. Pomeranz, Joseph M. Owen, Michael J. Shaw, David P. Kelly, Philip R. Staver, Peter A. Budni, John C. Wikman
  • Patent number: 9036250
    Abstract: Techniques and structure are disclosed for implementing a spatial walk-off compensation mechanism having an integral tilt function. In some embodiments, the mechanism may comprise a tilt-ball mount having an integrated walk-off compensation medium. In some embodiments, the mechanism may be configured to receive an output beam from a non-linear converter (e.g., optical parametric oscillator or OPO) implementing a non-linear medium comprising a bi-refringent material (e.g., zinc germanium phosphide, or ZnGeP2; cadmium silicon phosphide, or CdSiP2). In some embodiments, the walk-off compensation medium may comprise the same material and/or have the same cut as the non-linear medium. In some embodiments, the mechanism may be manually and/or mechanically adjusted/repositioned to reduce beam walk-off and/or to more precisely direct the beam. In some embodiments, the mechanism may be implemented in mid-infrared (MIR) applications. Numerous configurations and variations will be apparent in light of this disclosure.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: May 19, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, Nathan E. Rines
  • Patent number: 8995494
    Abstract: Techniques and architecture are disclosed for providing a laser system. In one specific example embodiment, the system includes a thulium-doped fiber laser coupled by silica glass fiber to a remote optical converter (ROC) including a Ho:YAG laser and, optionally, an optical parametric oscillator (OPO) utilizing zinc germanium phosphide (ZnGeP2; ZGP) or orientation-patterned gallium arsenide (OPGaAs). The fiber laser may emit a low-peak-power, continuous wave pump signal that pumps the Ho:YAG laser, which in turn emits a higher-peak-power, pulsed signal. When included, the OPO can be used to convert the resultant, pulsed signal to a longer wavelength (e.g., about 2-5 ?m, or greater). In some cases, distributed architecture and reduced weight/bulk may be realized while eliminating the need to actively cool the ROC for operation, for example, over a broad temperature range (e.g., ?55-125° C.). Also, methods of preparing high-peak-power, pulsed signals using such systems are disclosed.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: March 31, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Leonard A Pomeranz, Joseph M Owen, Michael J. Shaw, David P. Kelly, Philip R. Staver, Peter A. Budni, John C. Wikman
  • Patent number: 8931961
    Abstract: A fiber-optic connector for connecting an optical fiber to other optical assemblies is disclosed. The fiber-optic connector includes a top plate having a window of similar refractive index and transmission index as the material of an optic fiber to be contained within the fiber-optic connector. The fiber-optic connector also includes a ferrule connected to the top plate via multiple spring-loaded screws. The ferrule includes an interface and an insert. The insert is capable of firmly gripping an optical fiber. In order to reduce Fresnel reflection losses of the fiber-optic connector, the window is pre-coated with an anti-reflective surface on the side opposite an optic fiber to be contained within the fiber-optic connector.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: January 13, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, David P. Kelly
  • Patent number: 8865031
    Abstract: A method and apparatus for applying a mid-IR graded microstructure to the end of an As2S3 optical fiber are presented herein. The method and apparatus transfer a microstructure from a negative imprint on a nickel shim to an As2S3 fiber tip with minimal shape distortion and minimal damage-threshold impact resulting in large gains in anti-reflective properties.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: October 21, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, David P. Kelly, Michael E. Chadwick
  • Publication number: 20140233895
    Abstract: A fiber-optic connector for connecting an optical fiber to other optical assemblies is disclosed. The fiber-optic connector includes a top plate having a window of similar refractive index and transmission index as the material of an optic fiber to be contained within the fiber-optic connector. The fiber-optic connector also includes a ferrule connected to the top plate via multiple spring-loaded screws. The ferrule includes an interface and an insert. The insert is capable of firmly gripping an optical fiber. In order to reduce Fresnel reflection losses of the fiber-optic connector, the window is pre-coated with an anti-reflective surface on the side opposite an optic fiber to be contained within the fiber-optic connector.
    Type: Application
    Filed: September 26, 2013
    Publication date: August 21, 2014
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, David P. Kelly
  • Publication number: 20140061479
    Abstract: A laser-based infrared countermeasure (IRCM) system is disclosed. The IRCM system includes a set of receive optics, a dichroic filter, first and second detectors, a lens module and a laser. Receive optics are configured to receive optical information. The lens module reflects the optical information from the receive optics to the dichroic filter. The dichroic filter selectively splits the optical information to the first and second detectors. The first and second detectors, each of which is formed by a single-pixel detector, detects a potential missile threat from the optical information. Based on information collected by the first and second detectors, the laser sends laser beams to neutralize any missile threat.
    Type: Application
    Filed: April 19, 2010
    Publication date: March 6, 2014
    Inventors: Joseph M. Owen, III, Peter Russo, Jeffrey Minch, Kevin Larochelle, Kenneth Dinndorf
  • Patent number: 8665421
    Abstract: A laser-based infrared countermeasure (IRCM) system is disclosed. The IRCM system includes a set of receive optics, a dichroic filter, first and second detectors, a lens module and a laser. Receive optics are configured to receive optical information. The lens module reflects the optical information from the receive optics to the dichroic filter. The dichroic filter selectively splits the optical information to the first and second detectors. The first and second detectors, each of which is formed by a single-pixel detector, detects a potential missile threat from the optical information. Based on information collected by the first and second detectors, the laser sends laser beams to neutralize any missile threat.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: March 4, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, III, Peter Russo, Jeffrey Minch, Kevin Larochelle, Kenneth Dinndorf
  • Publication number: 20130155493
    Abstract: Techniques and structure are disclosed for implementing a spatial walk-off compensation mechanism having an integral tilt function. In some embodiments, the mechanism may comprise a tilt-ball mount having an integrated walk-off compensation medium. In some embodiments, the mechanism may be configured to receive an output beam from a non-linear converter (e.g., optical parametric oscillator or OPO) implementing a non-linear medium comprising a bi-refringent material (e.g., zinc germanium phosphide, or ZnGeP2; cadmium silicon phosphide, or CdSiP2). In some embodiments, the walk-off compensation medium may comprise the same material and/or have the same cut as the non-linear medium. In some embodiments, the mechanism may he manually and/or mechanically adjusted/repositioned to reduce beam walk-off and/or to more precisely direct the beam. In some embodiments, the mechanism may be implemented in mid-infrared (MIR) applications. Numerous configurations and variations will be apparent in light of this disclosure.
    Type: Application
    Filed: April 20, 2012
    Publication date: June 20, 2013
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Joseph M. Owen, Nathan E. Rines
  • Publication number: 20130087694
    Abstract: Techniques are disclosed for monitoring parameters in a high power fiber laser or amplifier system without adding a tap coupler or increasing fiber length. In some embodiments, a cladding stripper is used to draw off a small percentage of light propagating in the cladding to an integrated signal parameter monitor. Parameters at one or more specific wavelengths (e.g., pump signal wavelength, signal/core signal wavelength, etc) can be monitored. In some such cases, filters can be used to allow for selective passing of signal wavelength to be monitored to a corresponding parameter monitor. The filters can be external or may be integrated into a parameter monitor package that includes cladding stripper with integrated parameter monitor. Other parameters of interest (e.g., phase, wavelength) can also be monitored, in addition to, or as an alternative to power. Numerous configurations and variations will be apparent in light of this disclosure (e.g., system-on-chip).
    Type: Application
    Filed: March 19, 2012
    Publication date: April 11, 2013
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Daniel J. Creeden, Joseph M. Owen