Patents by Inventor Joseph M. Schmitt

Joseph M. Schmitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220039668
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20220039667
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Patent number: 11241154
    Abstract: In part, the invention relates to an image data collection system. The system can include an interferometer having a reference arm that includes a first optical fiber of length of L1 and a sample arm that includes a second optical fiber of length of L2 and a first rotary coupler configured to interface with an optical tomography imaging probe, wherein the rotary coupler is in optical communication with the sample arm. In one embodiment, L2 is greater than about 5 meters. The first optical fiber and the second optical fiber can both be disposed in a common protective sheath. In one embodiment, the system further includes an optical element configured to adjust the optical path length of the reference arm, wherein the optical element is in optical communication with the reference arm and wherein the optical element is transmissive or reflective.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: February 8, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Desmond Adler, Joseph M. Schmitt, Mattias Dahlberg, Par Gustafsson, Ulrik Hubinette, Magnus Samuelsson, Johan Svanerudh
  • Publication number: 20220015652
    Abstract: Embodiments are directed to a blood pressure measurement device including a cuff that is operative to wrap around a limb of a user, a bladder coupled to the cuff and operative to compress the limb of the user when inflated, and a piezoelectric sensor coupled to the cuff and operative to detect blood flow through the limb of the user and output a signal indicative of the blood flow. The blood pressure measurement device can also include a processor coupled with the piezoelectric sensor that is operative to filter the signal to isolate sounds corresponding to changes in the blood flow through the limb due to inflation of the bladder, correlate the isolated sounds with a pressure inside the bladder, and determine a blood pressure of the user at least partially based on correlating the isolated sounds with the pressure.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 20, 2022
    Inventors: Joseph R. Lee, Joseph M. Schmitt, Derek Young, Pranay Jain, Ali M. Amin, Wegene Tadele, Zijing Zeng
  • Publication number: 20210393152
    Abstract: A blood pressure cuff includes a support band that is selectively reconfigured between a flexible standby configuration and a measurement configuration. A blood pressure cuff includes an inflatable bladder, a support band, and a control unit. The support band is attached to and surrounds the inflatable bladder. The support band is reconfigurable, in response to an input from the control unit, from a standby configuration for between blood pressure measurements to a measurement configuration for constraining the inflatable bladder while the inflatable bladder is in an inflated state during a blood pressure measurement. The control unit includes a bladder pump for inflation of the inflatable bladder during a blood pressure measurement and controls the selective reconfiguration of the support band.
    Type: Application
    Filed: September 23, 2019
    Publication date: December 23, 2021
    Inventors: Derek Park-Shing Young, Joseph M. Schmitt, Zijing Zeng, Erno H. Klaassen
  • Patent number: 11058308
    Abstract: An optical coherence tomography system and method with integrated pressure measurement. In one embodiment the system includes an interferometer including: a wavelength swept laser; a source arm in communication with the wavelength swept laser; a reference arm in communication with a reference reflector, a first photodetector having a signal output; a detector arm in communication with the first photodetector, a probe interlace; a sample arm in communication with a first optical connector of the probe interface; an acquisition and display system comprising: an A/D converter having a signal input in communication with the first photodetector signal output and a signal output; a processor system in communication with the A/D converter signal output; and a display in communication with the processor system; and a probe comprising a pressure sensor and configured for connection to the first optical connector of the probe interface, wherein the pressure transducer comprises an optical pressure transducer.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: July 13, 2021
    Assignee: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Christopher Petroff
  • Publication number: 20210208010
    Abstract: A camera attachment for measuring a temperature of a surface, and related methods of measuring the temperature of the surface, employ a temperature reactive material that is thermally coupled with the surface and imaged to provide image data of the temperature reactive material that is analyzed to measure the temperature. A camera attachment for measuring a temperature of a surface includes a distal surface configured to be thermally coupled with the surface, a frame configured to be coupled with a camera that has a field of view, and a temperature reactive material coupled with the frame and thermally coupled with the distal surface. The frame positions the temperature reactive material within the field of view of the camera so that an image captured by the camera includes at least a portion of the temperature reactive material.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 8, 2021
    Inventors: Joseph M. Schmitt, Pablo A. Escobar, Zijing Zeng
  • Patent number: 10890494
    Abstract: A camera attachment for measuring a temperature of a surface, and related methods of measuring the temperature of the surface, employ a temperature reactive material that is thermally coupled with the surface and imaged to provide image data of the temperature reactive material that is analyzed to measure the temperature. A camera attachment for measuring a temperature of a surface includes a distal surface configured to be thermally coupled with the surface, a frame configured to be coupled with a camera that has a field of view, and a temperature reactive material coupled with the frame and thermally coupled with the distal surface. The frame positions the temperature reactive material within the field of view of the camera so that an image captured by the camera includes at least a portion of the temperature reactive material.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: January 12, 2021
    Assignee: Apple Inc.
    Inventors: Joseph M. Schmitt, Pablo A. Escobar, Zijing Zeng
  • Patent number: 10892951
    Abstract: Disclosed is a device management system for discovery and management of components added to computer systems and sub-systems. The device management system provides for recognizing a newly added component, and determining if the newly added component is already a part of the system inventory. The newly added component is matched with a component currently on the system, based on at least one matching attribute. A point total is calculated for each match level and a final match score is provided. The match score is compared with an aggressiveness level to determine if a match does indeed exist.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: January 12, 2021
    Assignee: Device42, Inc.
    Inventors: Rajneesh Jalan, Joseph M. Schmitt, Marco Simoes
  • Publication number: 20200352446
    Abstract: In part, the invention relates to methods, apparatus, and systems suitable for determining a fractional flow reserve (FFR) and variations of modifications thereof One embodiment relates to a method and apparatus for obtaining a corrected FFR in a vessel having a stenosis. In one aspect, the invention relates to an apparatus for measuring corrected FFR of a vessel having a stenosis. In one embodiment, the apparatus includes a probe comprising an optical coherence tomography assembly and a pressure assembly; and a processor in communication with the optical coherence tomography assembly and the pressure assembly. In one embodiment, the pressure assembly measures values of pressure in predetermined locations the vessel and communicates them to the processor. In one embodiment, a dual guidewire is used to reduce the interference in the pressure measurement.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Applicant: LightLab Imaging, Inc.
    Inventors: Christopher Petroff, Joseph M. Schmitt
  • Publication number: 20200328942
    Abstract: Disclosed is a device management system for discovery and management of components added to computer systems and sub-systems. The device management system provides for recognizing a newly added component, and determining if the newly added component is already a part of the system inventory. The newly added component is matched with a component currently on the system, based on at least one matching attribute. A point total is calculated for each match level and a final match score is provided. The match score is compared with an aggressiveness level to determine if a match does indeed exist.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 15, 2020
    Applicant: Device42, Inc.
    Inventors: Rajneesh Jalan, Joseph M. Schmitt, Marco Simoes
  • Publication number: 20190380594
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 19, 2019
    Applicant: LIGHTLAB IMAGING, INC.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20190343409
    Abstract: An optical coherence tomography system and method with integrated pressure measurement. In one embodiment the system includes an interferometer including: a wavelength swept laser; a source arm in communication with the wavelength swept laser; a reference arm in communication with a reference reflector, a first photodetector having a signal output; a detector arm in communication with the first photodetector, a probe interlace; a sample arm in communication with a first optical connector of the probe interface; an acquisition and display system comprising: an A/D converter having a signal input in communication with the first photodetector signal output and a signal output; a processor system in communication with the A/D converter signal output; and a display in communication with the processor system; and a probe comprising a pressure sensor and configured for connection to the first optical connector of the probe interface, wherein the pressure transducer comprises an optical pressure transducer.
    Type: Application
    Filed: November 30, 2018
    Publication date: November 14, 2019
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Christopher Petroff
  • Patent number: 10219702
    Abstract: A single optical fiber force-sensing assembly includes a catheter configured to detect both axial and bending tip displacement. The catheter includes a flexible structure located adjacent to a distal tip portion of the catheter. The single optical fiber within the catheter defines a first reflective surface. A second reflective surface is located closely adjacent to the first reflective surface.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: March 5, 2019
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: John W. Sliwa, Joseph M. Schmitt, Yu Liu
  • Publication number: 20180344174
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimate blood flow rate, a number of clinically significant physiological parameters are then determine and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: March 12, 2013
    Publication date: December 6, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20180306569
    Abstract: In part, aspects of the invention relate to methods, apparatus, and systems for intensity and/or pattern line noise reduction in a data collection system such as an optical coherence tomography system that uses an electromagnetic radiation source and interferometric principles. In one embodiment, the noise is intensity noise or line pattern noise and the source is a laser such as a swept laser. One or more attenuators responsive to one or more control signals can be used in conjunction with an analog or digital feedback network in one embodiment.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Victor Grinberg
  • Publication number: 20180192957
    Abstract: A method and apparatus for determining properties of a tissue or tissues imaged by optical coherence tomography (OCT). In one embodiment the backscatter and attenuation of the OCT optical beam is measured and based on these measurements and indicium such as color is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion. The image is then displayed with the indicia and a user can then determine the tissue characteristics. In an alternative embodiment the tissue characteristics is classified automatically by a program given the combination of backscatter and attenuation values.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Chenyang Xu
  • Patent number: 10006753
    Abstract: In part, aspects of the invention relate to methods, apparatus, and systems for intensity and/or pattern line noise reduction in a data collection system such as an optical coherence tomography system that uses an electromagnetic radiation source and interferometric principles. In one embodiment, the noise is intensity noise or line pattern noise and the source is a laser such as a swept laser. One or more attenuators responsive to one or more control signals can be used in conjunction with an analog or digital feedback network in one embodiment.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 26, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Joseph M. Schmitt, Victor Grinberg
  • Patent number: 9983356
    Abstract: In one embodiment, the invention relates to an apparatus for increasing the repetition rate in a light source. The apparatus includes a first optical coupler comprising a first arm, a second arm and a third arm; a first mirror in optical communication with the second arm of the first optical coupler; and a first optical delay line having a first end in optical communication with the third arm of the first optical coupler and a second end in optical communication with a second mirror, wherein light entering the first arm of the first optical coupler leaves the first arm of the first optical coupler either delayed by an amount (?) or substantially undelayed.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: May 29, 2018
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Joseph M. Schmitt, Desmond Adler
  • Publication number: 20180003482
    Abstract: In one embodiment of the invention, a semiconductor optical amplifier (SOA) in a laser ring is chosen to provide low polarization-dependent gain (PDG) and a booster semiconductor optical amplifier, outside of the ring, is chosen to provide high polarization-dependent gain. The use of a semiconductor optical amplifier with low polarization-dependent gain nearly eliminates variations in the polarization state of the light at the output of the laser, but does not eliminate the intra-sweep variations in the polarization state at the output of the laser, which can degrade the performance of the SS-OCT system.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 4, 2018
    Applicant: LightLab Imaging, Inc.
    Inventor: Joseph M. Schmitt