Patents by Inventor Joseph Manak

Joseph Manak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220296197
    Abstract: A system and a method by which multiple regions or objects of interest can be indicated within an X-ray image, from which a user can select a primary region or object of interest and accordingly adjust the appropriate X-ray dose for obtaining a better quality image of the selected regions or objects of interest.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 22, 2022
    Applicant: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: John BAUMGART, Joseph MANAK
  • Patent number: 11450001
    Abstract: A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry acquires image data including image data of a blood vessel of a subject. The processing circuitry performs analysis related to the blood vessel by using the image data, and specifies a region of interest in the blood vessel based on a result of the analysis. The processing circuitry performs fluid analysis on a region other than the region of interest at a first accuracy, and performs fluid analysis on the region of interest at a second accuracy that is higher than the first accuracy.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: September 20, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Yiemeng Hoi, Joseph Manak, Kazumasa Arakita, Jingwu Yao, James Begelman, Victor Gorin
  • Publication number: 20220110602
    Abstract: A method of imaging includes obtaining a first image including projection data representing an intensity of X-rays detected by a plurality of detectors at a first X-ray exposure setting, the X-rays being emitted from an X-ray source; based on a detection result of a first object in the first image: determining a background region of interest (ROI) around the first object, the background ROI including background ROI pixels having a first intensity value corresponding to the intensity of the X-rays; and converting, for each pixel of the background ROI pixels, the first intensity values of the background ROI pixels to a normalized X-ray attenuation factor; and determining a second X-ray exposure setting for use in obtaining a second image based on the background ROI pixels converted to the normalized X-ray attenuation factor.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 14, 2022
    Applicant: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Weifeng SHANG, Joseph MANAK, John BAUMGART
  • Patent number: 11107445
    Abstract: A system, method and computer readable medium to render, as a single image, source data from a network of data providers, that provide source data of a respective data type. A composition space contains two-dimensional (2D) display surfaces to which the source data is provided from the data providers, and transformation operator surfaces, which are located at different positions in a depth direction than the 2D display surfaces. Each of the transformation operator surfaces represent a respective visual transformation operation on surfaces of the 2D display surfaces that are positioned at lesser depths than the transformation operator surface. Using data-centric communication, updates are published to the 2D display surfaces, the updates including the source data from the data providers, and, upon detecting an update to a subscribed 2D display surface, the subscribed 2D display surface is rendered as the single image by performing the visual transformation operations.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: August 31, 2021
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: James Begelman, Victor Gorin, Joseph Manak
  • Publication number: 20210082374
    Abstract: A system, method and computer readable medium to render, as a single image, source data from a network of data providers, that provide source data of a respective data type. A composition space contains two-dimensional (2D) display surfaces to which the source data is provided from the data providers, and transformation operator surfaces, which are located at different positions in a depth direction than the 2D display surfaces. Each of the transformation operator surfaces represent a respective visual transformation operation on surfaces of the 2D display surfaces that are positioned at lesser depths than the transformation operator surface. Using data-centric communication, updates are published to the 2D display surfaces, the updates including the source data from the data providers, and, upon detecting an update to a subscribed 2D display surface, the subscribed 2D display surface is rendered as the single image by performing the visual transformation operations.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Applicant: Canon Medical Systems Corporation
    Inventors: James BEGELMAN, Victor GORIN, Joseph MANAK
  • Patent number: 10789738
    Abstract: An apparatus and method are provided for computed tomography (CT) imaging to reduce artifacts due to objects outside the field of view (FOV) of a reconstructed image. The artifacts are suppressed by using an iterative reconstruction method to minimize a cost function that includes a de-emphasis operator. The de-emphasis operator operates in the data domain, and minimizes the contributions of data inconsistencies arising from attenuation due to objects outside the FOV. This can be achieved by penalizing images that manifest indicia of artifacts due to outside objects especially those outside objects have high-attenuation densities and minimizing components of the data inconsistency likely attributable to the outside object.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: September 29, 2020
    Assignees: THE UNIVERSITY OF CHICAGO, CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Xiaochuan Pan, Zheng Zhang, Dan Xia, Yu-Bing Chang, Jingwu Yao, Joseph Manak
  • Publication number: 20200242770
    Abstract: A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry acquires image data including image data of a blood vessel of a subject. The processing circuitry performs analysis related to the blood vessel by using the image data, and specifies a region of interest in the blood vessel based on a result of the analysis. The processing circuitry performs fluid analysis on a region other than the region of interest at a first accuracy, and performs fluid analysis on the region of interest at a second accuracy that is higher than the first accuracy.
    Type: Application
    Filed: April 10, 2020
    Publication date: July 30, 2020
    Applicant: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Yiemeng HOI, Joseph MANAK, Kazumasa ARAKITA, Jingwu YAO, James BEGELMAN, Victor GORIN
  • Patent number: 10702234
    Abstract: A method and apparatus is provided to generate two X-ray projection images, using different focal-spot sizes in the X-ray source. The large and small focal-spot images have different image qualities (e.g., different signal-to-noise rations (SNR) and different resolution). The two images are combined, in either the spatial or frequency domains, to generate a combined image, exhibiting the best attributes of the constitutive small and large focal-spot images. In the spatial domain, change regions and uniform regions are determined based on spatial variations within the images, and the superposition generating the combined image weights the small focal-spot image more in the change regions and the large focal-spot image more in the uniform regions. In the frequency domain, the combined image superimposes low-frequency components of the large focal-spot image with high-frequency components of the small focal-spot image.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: July 7, 2020
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Amit Jain, Joseph Manak, Haruki Iwai
  • Patent number: 10650522
    Abstract: A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry acquires image data including image data of a blood vessel of a subject. The processing circuitry performs analysis related to the blood vessel by using the image data, and specifies a region of interest in the blood vessel based on a result of the analysis. The processing circuitry performs fluid analysis on a region other than the region of interest at a first accuracy, and performs fluid analysis on the region of interest at a second accuracy that is higher than the first accuracy.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: May 12, 2020
    Assignee: Canon Medical Systems Corporation
    Inventors: Yiemeng Hoi, Joseph Manak, Kazumasa Arakita, Jingwu Yao, James Begelman, Victor Gorin
  • Patent number: 10517543
    Abstract: A method and apparatus is provided to generate a multiresolution image having at least two regions with different pixel pitches. The multiresolution image is reconstructed using projection data having various pixel pitches corresponding to the pixel pitches of the multiresolution image. By using a higher resolution inside regions of interest (ROIs) in both the image and projection domains and lower resolution outside the ROIs, fast image reconstruction can be performed while avoiding truncation artifacts, which result imaging is limited to an ROI excluding attenuation regions. Further, those regions of greater clinical relevance and greater structural variance within the reconstructed images can be selected to be within the ROIs to improve the clinical benefit of the multiresolution image. The multiresolution image can be reconstructed using an iterative reconstruction method in which the high- and low-resolution regions are uniquely evaluated.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: December 31, 2019
    Assignees: The University of Chicago, Canon Medical Systems Corporation
    Inventors: Xiaochuan Pan, Zheng Zhang, Dan Xia, Yu-Bing Chang, Joseph Manak
  • Publication number: 20190266729
    Abstract: A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry acquires image data including image data of a blood vessel of a subject. The processing circuitry performs analysis related to the blood vessel by using the image data, and specifies a region of interest in the blood vessel based on a result of the analysis. The processing circuitry performs fluid analysis on a region other than the region of interest at a first accuracy, and performs fluid analysis on the region of interest at a second accuracy that is higher than the first accuracy.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Applicant: Canon Medical Systems Corporation
    Inventors: Yiemeng Hoi, Joseph Manak, Kazumasa Arakita, Jingwu Yao, James Begelman, Victor Gorin
  • Patent number: 10346984
    Abstract: A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry acquires image data including image data of a blood vessel of a subject. The processing circuitry performs analysis related to the blood vessel by using the image data, and specifies a region of interest in the blood vessel based on a result of the analysis. The processing circuitry performs fluid analysis on a region other than the region of interest at a first accuracy, and performs fluid analysis on the region of interest at a second accuracy that is higher than the first accuracy.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: July 9, 2019
    Assignee: Canon Medical Systems Corporation
    Inventors: Yiemeng Hoi, Joseph Manak, Kazumasa Arakita, Jingwu Yao, James Begelman, Victor Gorin
  • Publication number: 20190139272
    Abstract: An apparatus and method are provided for computed tomography (CT) imaging to reduce artifacts due to objects outside the field of view (FOV) of a reconstructed image. The artifacts are suppressed by using an iterative reconstruction method to minimize a cost function that includes a de-emphasis operator. The de-emphasis operator operates in the data domain, and minimizes the contributions of data inconsistencies arising from attenuation due to objects outside the FOV. This can be achieved by penalizing images that manifest indicia of artifacts due to outside objects especially those outside objects have high-attenuation densities and minimizing components of the data inconsistency likely attributable to the outside object.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 9, 2019
    Applicants: THE UNIVERSITY OF CHICAGO, CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Xiaochuan Pan, Zheng Zhang, Dan Xia, Yu-Bing Chang, Jingwu Yao, Joseph Manak
  • Publication number: 20190076101
    Abstract: A method and apparatus is provided to generate a multiresolution image having at least two regions with different pixel pitches. The multiresolution image is reconstructed using projection data having various pixel pitches corresponding to the pixel pitches of the multiresolution image. By using a higher resolution inside regions of interest (ROIs) in both the image and projection domains and lower resolution outside the ROIs, fast image reconstruction can be performed while avoiding truncation artifacts, which result imaging is limited to an ROI excluding attenuation regions. Further, those regions of greater clinical relevance and greater structural variance within the reconstructed images can be selected to be within the ROIs to improve the clinical benefit of the multiresolution image. The multiresolution image can be reconstructed using an iterative reconstruction method in which the high- and low-resolution regions are uniquely evaluated.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Applicants: The University of Chicago, Toshiba Medical Systems Corporation
    Inventors: Xiaochuan Pan, Zheng Zhang, Dan Xia, Yu-Bing Chang, Joseph Manak
  • Patent number: 10163209
    Abstract: A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry acquires image data including image data of a blood vessel of a subject. The processing circuitry performs analysis related to the blood vessel by using the image data, and specifies a region of interest in the blood vessel based on a result of the analysis. The processing circuitry performs fluid analysis on a region other than the region of interest at a first accuracy, and performs fluid analysis on the region of interest at a second accuracy that is higher than the first accuracy.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: December 25, 2018
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Yiemeng Hoi, Joseph Manak, Kazumasa Arakita, Jingwu Yao, James Begelman, Victor Gorin
  • Publication number: 20180330503
    Abstract: A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry acquires image data including image data of a blood vessel of a subject. The processing circuitry performs analysis related to the blood vessel by using the image data, and specifies a region of interest in the blood vessel based on a result of the analysis. The processing circuitry performs fluid analysis on a region other than the region of interest at a first accuracy, and performs fluid analysis on the region of interest at a second accuracy that is higher than the first accuracy.
    Type: Application
    Filed: July 11, 2018
    Publication date: November 15, 2018
    Applicant: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Yiemeng HOI, Joseph Manak, Kazumasa Arakita, Jingwu Yao, James Begelman, Victor Gorin
  • Patent number: 10098603
    Abstract: An apparatus for generating corrected X-ray projection data from target X-ray projection data obtained by performing an X-ray scan with a detector having an anti-scatter grid, and a method for creating a lookup table and generating corrected X-ray projection data. The apparatus includes a detector configured to detect incident X-rays, an anti-scatter grid configured to suppress scattered radiation incident on the detector, and an X-ray source configured to irradiate the target with X-rays. Processing circuitry is configured to cause the X-ray source to scan, using a peak kilovoltage (kVp), the target to produce the target projection data, determine a patient-to-detector distance (PDD) and an area irradiated (FS), transform the target projection data into a spatial frequency domain, determine scatter values by accessing the lookup table using the kVp, PDD, and FS values, and subtract the scatter values from the frequency components to obtain the corrected X-ray projection data.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 16, 2018
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Joseph Manak, Amit Jain, Hisato Takemoto
  • Publication number: 20180235564
    Abstract: A method and apparatus is provided to generate two X-ray projection images, using different focal-spot sizes in the X-ray source. The large and small focal-spot images have different image qualities (e.g., different signal-to-noise rations (SNR) and different resolution). The two images are combined, in either the spatial or frequency domains, to generate a combined image, exhibiting the best attributes of the constitutive small and large focal-spot images. In the spatial domain, change regions and uniform regions are determined based on spatial variations within the images, and the superposition generating the combined image weights the small focal-spot image more in the change regions and the large focal-spot image more in the uniform regions. In the frequency domain, the combined image superimposes low-frequency components of the large focal-spot image with high-frequency components of the small focal-spot image.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 23, 2018
    Applicant: Toshiba Medical Systems Corporation
    Inventors: Amit JAIN, Joseph Manak, Haruki Iwai
  • Patent number: 10019795
    Abstract: A radiography apparatus includes a radiation source, a radiation detector, and processing circuitry. The processing circuitry is configured to obtain an X-ray image of an object, obtain a focal spot size of a radiation source used to generate the obtained X-ray image, and estimate a magnification of the obtained X-ray image. The processing circuitry is also configured to obtain, using a look-up table and the obtained focal spot size, a deconvolution kernel. The processing circuitry is also configured to generate a corrected X-ray image by performing a deconvolution operation on the obtained X-ray image using the obtained deconvolution kernel and the estimated magnification.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: July 10, 2018
    Assignees: The Research Foundation for the State University of New York, Toshiba Medical Systems Corporation
    Inventors: Stephen Rudin, Daniel R. Bednarek, Amit Jain, Joseph Manak
  • Publication number: 20180144475
    Abstract: A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry acquires image data including image data of a blood vessel of a subject. The processing circuitry performs analysis related to the blood vessel by using the image data, and specifies a region of interest in the blood vessel based on a result of the analysis. The processing circuitry performs fluid analysis on a region other than the region of interest at a first accuracy, and performs fluid analysis on the region of interest at a second accuracy that is higher than the first accuracy.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 24, 2018
    Applicant: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Yiemeng HOI, Joseph MANAK, Kazumasa ARAKITA, Jingwu YAO, James BEGELMAN, Victor GORIN