Patents by Inventor Joseph Michael Clarke

Joseph Michael Clarke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10897475
    Abstract: In one embodiment, a device in a network intercepts a Domain Name System (DNS) query sent by a node in the network to a DNS service. The device inserts metadata information about the node into the DNS query before sending the DNS query on to the DNS service. The device extracts policy information regarding the node from a DNS response sent from the DNS service back to the node in response to the DNS query. The device implements a network policy for the node within the network based on the policy information extracted from the DNS response.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: January 19, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Joseph Michael Clarke, Charles Calvin Byers, Gonzalo Salgueiro
  • Patent number: 10862793
    Abstract: A network device receives a data packet including a source address and a destination address. The network device drops the data packet before it reaches the destination address and generates an error message indicating that the data packet has been dropped. The network device encapsulates the error message with a segment routing header comprising a list of segments. The first segment of the list of segments in the segment routing header identifies a remote server, and at least one additional segment is an instruction for handling the error message. The network device sends the encapsulated error message to the remote server based on the first segment of the segment routing header.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: December 8, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Nagendra Kumar Nainar, Carlos M. Pignataro, Joseph Michael Clarke
  • Patent number: 10849250
    Abstract: In one embodiment, a system includes a central hub comprising a power source, a data switch, a coolant system, and a management module, a plurality of network devices located within an interconnect domain of the central hub, and at least one combined cable connecting the central hub to the network devices and comprising a power conductor, a data link, a coolant tube, and a management communications link contained within an outer cable jacket.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 24, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Charles Calvin Byers, Gonzalo Salgueiro, M. David Hanes, Joel Richard Goergen, Joseph Michael Clarke
  • Patent number: 10841164
    Abstract: In one embodiment, a classification device in a computer network analyzes data from a given device in the computer network, and classifies the given device as a particular type of device based on the data. The classification device may then determine whether a manufacturer usage description (MUD) policy exists for the particular type of device. In response to there being no existing MUD policy for the particular type of device, the classification device may then determine patterns of the analyzed data, classify the patterns into context-based policies, and generate a derived MUD policy for the particular type of device based on the context-based policies. The classification device may then apply one of either the existing or derived MUD policy for the given device within the computer network.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: November 17, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Panagiotis Theodorou Kampanakis, Blake Harrell Anderson, Brian E. Weis, Charles Calvin Byers, M. David Hanes, Joseph Michael Clarke, Gonzalo Salgueiro
  • Patent number: 10838396
    Abstract: In one embodiment, a device in a network receives a set of sensor data from a plurality of sensors deployed in a location. The device determines a physical layout for furnishings in the location based on the received set of sensor data. One or more of the furnishings is equipped with one or more actuators configured to move the equipped furnishing in one or more directions. The device generates an instruction for the one or more actuators of a particular one of the furnishings based on the determined physical layout for the furnishings. The device sends the instruction to the one or more actuators of the particular furnishing, to implement the determined physical layout.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: November 17, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Charles Calvin Byers, Joseph Michael Clarke, Gonzalo Salgueiro, Pascal Thubert
  • Publication number: 20200296856
    Abstract: In one embodiment, a system includes a central hub comprising a power source, a data switch, a coolant system, and a management module, a plurality of network devices located within an interconnect domain of the central hub, and at least one combined cable connecting the central hub to the network devices and comprising a power conductor, a data link, a coolant tube, and a management communications link contained within an outer cable jacket.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 17, 2020
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Charles Calvin Byers, Gonzalo Salgueiro, M. David Hanes, Joel Richard Goergen, Joseph Michael Clarke
  • Patent number: 10778572
    Abstract: Presented herein are segment-routing methods and systems that facilitate data plane signaling of a packet as a candidate for capture at various network nodes within a segment routing (SR) network. The signaling occurs in-band, via the data plane—that is, a capture or interrogation signal is embedded within the respective packet that carries a user traffic. The signaling is inserted, preferably when the packet is classified, e.g., at the ingress node of the network, to which subsequent network nodes with the SR network are signaled to capture or further inspect the packet for capture.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: September 15, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Nagendra Kumar Nainar, Richard Furr, Carlos M. Pignataro, Joseph Michael Clarke
  • Patent number: 10756945
    Abstract: Approaches are disclosed for virtualizing a network management protocol (NMP). A network element offloads processes for communicating in the NMP to a virtualization engine (e.g., a backend virtualization proxy for the network element). The network element transmits a message containing a NMP request to the virtualization engine using service function chaining (SFC) by inserting service plane protocol data (e.g., a network service header (NSH)) into the message (e.g., an impregnated request). The virtualization engine expropriates, from the network element, processes for communicating in the NMP and can, thereby, reduce the computational resources used by the network element for communicating in the NMP. The virtualization engine generates a NMP response to the NMP request. The virtualization engine transmits a different message containing the NMP response to the network element using SFC by inserting service plane protocol data into the message (e.g., an impregnated response).
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: August 25, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Kondaveeti Lakshmi Ganesh, Joseph Michael Clarke, Carlos M. Pignataro
  • Publication number: 20200267543
    Abstract: Presented herein are methodologies to on-board and monitor Internet of Things (IoT) devices on a network. The methodology includes receiving at a server, from a plurality of IoT devices communicating over a network, data representative of external environmental factors being experienced by individual ones of the plurality of IoT devices at a predetermined location; generating, using machine learning, an aggregated model of the external environmental factors at the predetermined location; receiving, at the server, a communication indicative that a new IoT device seeks to join the network at the predetermined location; receiving, from the new IoT device, data representative of external environmental factors being experienced by the new IoT device; determining whether there is a discrepancy between the external environmental factors of the new IoT device and the aggregated model; and when there is such a discrepancy, prohibiting the new IoT device from joining the network.
    Type: Application
    Filed: February 18, 2019
    Publication date: August 20, 2020
    Inventors: Charles Calvin Byers, M. David Hanes, Gonzalo Salgueiro, Dmitri Goloubev, Joseph Michael Clarke
  • Patent number: 10735271
    Abstract: Automatic, adaptive stimulus generation includes receiving, at a network device that is associated with a network or system, analytics data that provides an indication of how the network or system is responding to a set of test stimuli introduced into the network or system to facilitate an analysis operation. The network device analyzes the analytics data based on an intended objective for the analysis operation and generates control settings based on the analyzing. The control settings control creation of a subsequent stimulus to be introduced into the network or system during subsequent execution of the analysis operation.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: August 4, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Charles Calvin Byers, Joseph Michael Clarke, Gonzalo Salgueiro, M. David Hanes
  • Patent number: 10696398
    Abstract: In one embodiment, a method includes receiving flight path data regarding the presence of an unmanned aerial vehicle (UAV) at a location at a future time, detecting the presence of the UAV at the location at the future time, determining radio identity data of the UAV using a radio mode of identification, determining optical identity data of the UAV using an optical mode of identification, and certifying the UAV based on a comparison of the radio identity data and the optical identity data to the flight path data.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: June 30, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Charles Calvin Byers, Gonzalo Salgueiro, Joseph Michael Clarke
  • Patent number: 10657020
    Abstract: In one embodiment, a server determines a particular computer network outside of a lab environment to recreate, and also determines, for the particular computer network, hardware components and their interconnectivity, as well as installed software components and their configuration. The server then controls interconnection of lab hardware components within the lab environment according to the interconnectivity of the hardware components of the particular computer network. The server also installs and configures lab software components on the lab hardware components according to the configuration of the particular computer network. Accordingly, the server operates the installed lab software components on the interconnected lab hardware components within the lab environment to recreate operation of the particular computer network within the lab environment, and provides information about the recreated operation of the particular computer network.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: May 19, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Michael David Hanes, Joseph Michael Clarke, Charles Calvin Byers, Gonzalo Salgueiro
  • Publication number: 20200153725
    Abstract: A network device receives a data packet including a source address and a destination address. The network device drops the data packet before it reaches the destination address and generates an error message indicating that the data packet has been dropped. The network device encapsulates the error message with a segment routing header comprising a list of segments. The first segment of the list of segments in the segment routing header identifies a remote server, and at least one additional segment is an instruction for handling the error message. The network device sends the encapsulated error message to the remote server based on the first segment of the segment routing header.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Inventors: Nagendra Kumar Nainar, Carlos M. Pignataro, Joseph Michael Clarke
  • Publication number: 20200145348
    Abstract: Systems, methods, and computer-readable media for orchestrating data center resources and user access to data. In some examples, a system can determine, at a first time, that a user will need, at a second time, access to data stored at a first location, from a second location. The system can identify a node which is capable of storing the data and accessible by a device from the second location. The system can also determine a first service parameter associated with a network connection between the device and the first location and a second service parameter associated with a network connection between the device and the node. When the second service parameter has a higher quality than the first service parameter, the system can migrate the data from the first location to the node so the device has access to the data from the second location through the node.
    Type: Application
    Filed: December 30, 2019
    Publication date: May 7, 2020
    Inventors: Charles Calvin Byers, Gonzalo Salgueiro, Joseph Michael Clarke, Chidambaram Arunachalam, Nagendra Kumar Nainar, Avraham Poupko
  • Publication number: 20200125529
    Abstract: In one embodiment, an apparatus includes a multi-socket motherboard, a processor connected to a first socket on the multi-socket motherboard, and an RDMA (Remote Direct Memory Access) interface module connected to a second socket on the multi-socket motherboard and in communication with the processor over a coherency interface. The RDMA interface module provides an inter-server interface between servers in an RDMA domain. A method for transferring data between servers with RDMA interface modules is also disclosed herein.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 23, 2020
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Charles Calvin Byers, M. David Hanes, Joseph Michael Clarke, Gonzalo Salgueiro
  • Patent number: 10574561
    Abstract: A network device receives a data packet including a source address and a destination address. The network device drops the data packet before it reaches the destination address and generates an error message indicating that the data packet has been dropped. The network device encapsulates the error message with a segment routing header comprising a list of segments. The first segment of the list of segments in the segment routing header identifies a remote server. The network device sends the encapsulated error message to the remote server based on the first segment of the segment routing header.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 25, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Nagendra Kumar Nainar, Carlos M. Pignataro, Joseph Michael Clarke
  • Patent number: 10568063
    Abstract: In one embodiment, a first wireless unmanned aerial vehicle (UAV)-locating signal is transmitted by a wireless network access point in a network based on a first UAV-locating mode selected from a plurality of UAV-locating modes. The wireless network access point receives a wireless signal in response to the first transmitted UAV-locating signal, the wireless signal indicative of a location of an airborne UAV, and causes the determination of the location of the airborne UAV based on the received wireless signal. The wireless network access point transmits a second wireless UAV-locating signal based on a second UAV-locating mode selected from the plurality of UAV-locating modes. The selected UAV-locating modes control an emission pattern of an antenna of the wireless network access point.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: February 18, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Michael David Hanes, Charles Calvin Byers, Gonzalo Salgueiro, Joseph Michael Clarke
  • Patent number: 10555054
    Abstract: In one embodiment, an autonomous carrier transports a fog computing module to an enclosure at a location determined to be in need of a particular fog computing resource, and aligns and anchors the fog computing module to the enclosure, where the aligning and anchoring is based on mating mechanical connectors on the fog computing module and enclosure. One or more electronic components of the fog computing module may then interface to the enclosure due to the anchoring, and the fog computing module activates at the location, accordingly. In one particular embodiment, the particular fog computing resource of the fog computing module is an additive resource to an existing fog computing resource module at the enclosure, and the existing fog computing resource module provides the mechanical connectors and interfaced electronic components of the enclosure.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: February 4, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Charles Calvin Byers, Gonzalo Salgueiro, Joseph Michael Clarke, Carlos M. Pignataro, Nagendra Kumar Nainar
  • Patent number: 10523592
    Abstract: Systems, methods, and computer-readable media for orchestrating data center resources and user access to data. In some examples, a system can determine, at a first time, that a user will need, at a second time, access to data stored at a first location, from a second location. The system can identify a node which is capable of storing the data and accessible by a device from the second location. The system can also determine a first service parameter associated with a network connection between the device and the first location and a second service parameter associated with a network connection between the device and the node. When the second service parameter has a higher quality than the first service parameter, the system can migrate the data from the first location to the node so the device has access to the data from the second location through the node.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: December 31, 2019
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Charles Calvin Byers, Gonzalo Salgueiro, Joseph Michael Clarke, Chidambaram Arunachalam, Nagendra Kumar Nainar, Avraham Poupko
  • Publication number: 20190356584
    Abstract: Presented herein are segment-routing methods and systems that facilitate data plane signaling of a packet as a candidate for capture at various network nodes within a segment routing (SR) network. The signaling occurs in-band, via the data plane—that is, a capture or interrogation signal is embedded within the respective packet that carries a user traffic. The signaling is inserted, preferably when the packet is classified, e.g., at the ingress node of the network, to which subsequent network nodes with the SR network are signaled to capture or further inspect the packet for capture.
    Type: Application
    Filed: April 19, 2019
    Publication date: November 21, 2019
    Inventors: Nagendra Kumar Nainar, Richard Furr, Carlos M. Pignataro, Joseph Michael Clarke