Patents by Inventor Joseph Michael Ranish

Joseph Michael Ranish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9839976
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: December 12, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Muir Hunter, Bruce E. Adams, Joseph Michael Ranish
  • Publication number: 20150069028
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: November 5, 2014
    Publication date: March 12, 2015
    Inventors: Dean JENNINGS, Haifan LIANG, Mark YAM, Vijay PARIHAR, Abhilash J. MAYUR, Aaron Muir HUNTER, Bruce E. ADAMS, Joseph Michael RANISH
  • Patent number: 8907247
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 9, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Patent number: 8890024
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: November 18, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Patent number: 8653408
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: February 18, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Patent number: 8582962
    Abstract: A thermal processing chamber with a dielectric barrier discharge (DBD) lamp assembly and a method for using the same are provided. In one embodiment, a thermal processing chamber includes a chamber body and a dielectric barrier discharge lamp assembly. The dielectric barrier discharge lamp assembly further comprises a first electrode, a second electrode and a dielectric barrier. The dielectric barrier discharge lamp assembly is positioned between the first electrode and the second electrode. The dielectric barrier defines a discharge space between the dielectric barrier and the second electrode. A circuit arrangement is coupled to the first and second electrodes, and is adapted to operate the dielectric barrier discharge lamp assembly.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: November 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Michael Ranish, Kaushal Kishore Singh, Bruce Adams
  • Patent number: 8513626
    Abstract: Patterning effects on a substrate are reduced during radiation-based heating by filtering the radiation source or configuring the radiation source to produce radiation having different spectral characteristics. For the filtering, an optical filter may be used to truncate specific wavelengths of the radiation. The different configurations of the radiation source include a combination of one or more continuum radiation sources with one or more discrete spectrum sources, a combination of multiple discrete spectrum sources, or a combination of multiple continuum radiation sources. Furthermore, one or more of the radiation sources may be configured to have a substantially non-normal angle of incidence or polarized to reduce patterning effects on a substrate during radiation-based heating.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: August 20, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Balasubramanian Ramachandran, Joseph Michael Ranish, Aaron Muir Hunter
  • Publication number: 20120261395
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: May 31, 2012
    Publication date: October 18, 2012
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Publication number: 20120234801
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Inventors: Dean JENNINGS, Haifan LIANG, Mark YAM, Vijay PARIHAR, Abhilash J. MAYUR, Aaron HUNTER, Bruce ADAMS, Joseph Michael RANISH
  • Publication number: 20120234800
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Inventors: Dean JENNINGS, Haifan LIANG, Mark YAM, Vijay PARIHAR, Abhilash J. MAYUR, Aaron HUNTER, Bruce ADAMS, Joseph Michael RANISH
  • Publication number: 20120238111
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Patent number: 8242407
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: August 14, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Patent number: 8111978
    Abstract: Apparatus and methods for thermally processing a substrate are provided. A chamber containing a levitating support assembly configured to position the substrate at different distances from a plate during the heating and cooling of a substrate. In one embodiment a plurality of openings on the surface of the plate are configured to evenly distribute gas across a radial surface of the substrate. The distribution of gas may couple radiant energy not reflected back to the substrate during thermal processing with an absorptive region of the plate to begin the cooling of the substrate. The method and apparatus provided within allows for a controllable and effective means for thermally processing a substrate rapidly.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: February 7, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Khurshed Sorabji, Joseph Michael Ranish, Wolfgang Aderhold, Aaron Muir Hunter, Alexander N. Lerner
  • Patent number: 8106591
    Abstract: An apparatus and method for detecting lamp failure is described for an array of lamps used in a rapid thermal processing system. The lamp failure detection system enables identification of a failed lamp among a plurality of lamps, and also provides identification of the failure type. The apparatus applies a lamp failure detection method to the voltage drop values measured across each lamp to determine if a lamp is in a failure state. In one embodiment, a field programmable gate array is used to apply a failure detection method to the lamp voltage values.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: January 31, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Oleg V. Serebryanov, Alexander Goldin, Joseph Michael Ranish
  • Publication number: 20110263138
    Abstract: A thermal processing chamber with a dielectric barrier discharge (DBD) lamp assembly and a method for using the same are provided. In one embodiment, a thermal processing chamber includes a chamber body and a dielectric barrier discharge lamp assembly. The dielectric barrier discharge lamp assembly further comprises a first electrode, a second electrode and a dielectric barrier. The dielectric barrier discharge lamp assembly is positioned between the first electrode and the second electrode. The dielectric barrier defines a discharge space between the dielectric barrier and the second electrode. A circuit arrangement is coupled to the first and second electrodes, and is adapted to operate the dielectric barrier discharge lamp assembly.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventors: Joseph Michael Ranish, Kaushal Kishore Singh, Bruce Adams
  • Patent number: 7985945
    Abstract: Embodiments of the present invention provide apparatus and method for reducing noises in temperature measurement during thermal processing. One embodiment of the present invention provides a chamber for processing a substrate comprising a chamber enclosure defining a processing volume, an energy source configured to direct radiant energy toward the processing volume, a spectral device configured to treat the radiant energy directed from the energy source towards the processing volume, a substrate support disposed in the processing volume and configured to support the substrate during processing, and a sensor assembly configured to measure temperature of the substrate being processed by sensing radiation from the substrate within a selected spectrum.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: July 26, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Blake Koelmel, Joseph Michael Ranish, Aaron Hunter
  • Patent number: 7978964
    Abstract: A thermal processing chamber with a dielectric barrier discharge (DBD) lamp assembly and a method for using the same are provided. In one embodiment, a thermal processing chamber includes a chamber body and a dielectric barrier discharge lamp assembly. The dielectric barrier discharge lamp assembly further comprises a first electrode, a second electrode and a dielectric barrier. The dielectric barrier discharge lamp assembly is positioned between the first electrode and the second electrode. The dielectric barrier defines a discharge space between the dielectric barrier and the second electrode. A circuit arrangement is coupled to the first and second electrodes, and is adapted to operate the dielectric barrier discharge lamp assembly.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: July 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Michael Ranish, Kaushal Kishore Singh, Bruce Adams
  • Publication number: 20110133742
    Abstract: An apparatus and method for detecting lamp failure is described for an array of lamps used in a rapid thermal processing system. The lamp failure detection system enables identification of a failed lamp among a plurality of lamps, and also provides identification of the failure type. The apparatus applies a lamp failure detection method to the voltage drop values measured across each lamp to determine if a lamp is in a failure state. In one embodiment, a field programmable gate array is used to apply a failure detection method to the lamp voltage values.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 9, 2011
    Inventors: OLEG V. Serebryanov, Alexander Goldin, Joseph Michael Ranish
  • Patent number: 7923933
    Abstract: An apparatus and method for detecting lamp failure is described for an array of lamps used in a rapid thermal processing system. The lamp failure detection system enables identification of a failed lamp among a plurality of lamps, and also provides identification of the failure type. The apparatus applies a lamp failure detection method to the voltage drop values measured across each lamp to determine if a lamp is in a failure state. In one embodiment, a field programmable gate array is used to apply a failure detection method to the lamp voltage values.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Oleg V. Serebryanov, Alexander Goldin, Joseph Michael Ranish
  • Publication number: 20100264123
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 21, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish