Patents by Inventor Joseph Moebus

Joseph Moebus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230174757
    Abstract: The present disclosure generally relates to catalyst systems, polyethylene compositions, and uses of such compositions in, e.g., films. In an embodiment is provided a film that includes a polyethylene composition, comprising: ethylene and a C3-C40 olefin comonomer, the polyethylene composition having at least 75 wt % ethylene content and from 0 wt % to 25 wt % of a C3-C40 olefin comonomer content based upon the total weight of the composition as determined by GPC-IR5-LS-VIS, the film having: an average of MD and TD 1% secant modulus of 42,000 psi or greater as determined by ASTM D-882, and a Dart Drop Impact of greater than 400 g/mil, as determined by ASTM D1709.
    Type: Application
    Filed: April 27, 2021
    Publication date: June 8, 2023
    Inventors: Ru Xie, Matthew W. Holtcamp, David M. Fiscus, Dongming Li, Laughlin G. McCullough, Matthew S. Bedoya, Kevin A. Steven, Yan Jiang, Joseph A. Moebus
  • Publication number: 20230167254
    Abstract: The present disclosure generally relates to catalyst systems, polyethylene compositions, and uses of such compositions in, e.g., films. In an embodiment is provided a film that includes a polyethylene composition, comprising: ethylene and a C3-C40 olefin comonomer, the polyethylene composition having at least 65 wt % ethylene content and from 0 wt % to 35 wt % of a C3-C40 olefin comonomer content based upon the total weight of the composition, the film having: an average of MD and TD 1% secant modulus of 43,000 psi or greater, and a Dart Drop Impact Strength of greater than 500 g/mil. In another embodiment is provided a process for producing a polyethylene composition that includes introducing ethylene and a C3-C40 alpha-olefin to a catalyst system, the catalyst system comprising a first catalyst compound, a second catalyst compound, and an activator; and forming a polyethylene composition.
    Type: Application
    Filed: April 23, 2021
    Publication date: June 1, 2023
    Inventors: Ru Xie, Mattew W. Holtcamp, David M. Fiscus, Dongming Li, Laughlin G. McCullough, Matthew S. Bedoya, Kevin A. Stevens, Yan Jiang, Joseph A. Moebus
  • Publication number: 20230022904
    Abstract: A polyethylene comprising of ethylene derived units and 0.5 wt % to 10 wt % C3 to C12 ?-olefin derived units may be synthesized using a mixed catalyst that comprises rac-dimethylsilylbis(tetrahydroindenyl)zirconium dichloride and a zirconium co-catalyst in a mole ratio of 50:50 to 90:10, and wherein the zirconium co-catalyst is a poor comonomer incorporator as compared to the rac-dimethylsilylbis(tetrahydroindenyl)zirconium dichloride catalyst. Such a polyethylene may have a density of 0.91 g/cm3 to 0.93 g/cm3, an I2 value of 0.5 g/10 min to 2 g/10 min, an I21 value of 25 g/10 min to 75 g/10 min, an I21/I2 ratio of 25 to 75, a molar reversed-co-monomer index (RCI,m) of 30 to 180, a phase angle equal or lower than 70° at complex modulus G* of 10,000 Pa, a ?2 of 1.5 radians to ?1.5 radians, and a low density population of 50% and 70% by weight of the polyethylene.
    Type: Application
    Filed: November 18, 2020
    Publication date: January 26, 2023
    Inventors: Matthew W. HOLTCAMP, Matthew S. BEDOYA, Timothy M. BOLLER, Hasnain RANGWALLA, David F. SANDERS, Ching-Tai LUE, Dongming LI, Adriana S. SILVA, Ru XIE, Joseph A. MOEBUS
  • Publication number: 20220119563
    Abstract: The present disclosure relates to processes for production of polyolefins from olefin monomer(s) in a gas phase reactor using condensing agent(s) (CAs), and in particular relates to controlling condensed phase cooling in a gas phase reactor used to polymerize olefin monomer(s). The method may include introducing first and second condensing agent(s) into the reactor at ratio(s) determined by ascertaining a stick limit for the first condensing agent, calculating an equivalence factor relating the first and second condensing agents, ascertaining total allowable condensing agent, and calculating amount of the first condensing agent removed and replaced by the second condensing agent. The method may further include calculating the dew point limit of a gas phase composition including olefin monomer(s) as well as the first and second condensing agents; and determining if introducing a mixture comprising the olefin monomer(s) and the condensing agent composition would exceed the calculated dew point limit.
    Type: Application
    Filed: March 4, 2020
    Publication date: April 21, 2022
    Inventors: Bruce J. SAVATSKY, Brian R. GREENHALGH, Joseph A. MOEBUS, Aaron C. MCGINNIS, Ryan W. IMPELMAN, Anne A. BERNARD-BRUNEL
  • Publication number: 20220098332
    Abstract: This disclosure relates to processes for producing polyolefins in a gas phase reactor using condensing agent(s) (CAs), and real-time calculation of the ratio of one type of CA to another CA within a CA composition. This disclosure provides methods for controlling condensed phase cooling in a gas phase reactor used to polymerize olefins. The polymerization may employ one or more polymerization catalysts to polymerize one or more olefin monomers, and may include introducing a first condensing agent and a second condensing agent in a ratio of first condensing agent to second condensing agent, which ratio is calculated by ascertaining a stick limit for a first condensing agent, calculating an equivalence factor relating the first condensing agent and a second condensing agent, ascertaining a total allowable condensing agent, and calculating a first amount of the first condensing agent removed and replaced by a second amount of the second condensing agent.
    Type: Application
    Filed: March 4, 2020
    Publication date: March 31, 2022
    Inventors: Bruce J. SAVATSKY, Brian R. GREENHALGH, Joseph A. MOEBUS, Aaron C. MCGINNIS, Ryan W. IMPELMAN, Anne A. BERNARD-BRUNEL
  • Patent number: 11208513
    Abstract: A process for producing polyethylene polymers including contacting ethylene and at least one C3 to C8 alpha-olefin comonomer with a polymerization catalyst on a particulate support in a fluidized bed polymerization reactor under conditions effective to polymerize at least part of the ethylene and comonomer and produce the polyethylene polymers, wherein the support has a d10 particle size as measured by laser diffraction of at least 18 microns, is provided.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: December 28, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Corrine L. Brandl, William A. Lamberti, Charles R. Buhler, Judson S. Clements, Harry W. Deckman, Joseph Moebus, Marc L. DeChellis
  • Patent number: 11092395
    Abstract: Methods of online cleaning of heat exchangers at elevated temperatures are provided. Cleaning of the heat exchanger is achieved through an increasing heat exchanger effluent temperature of a polymer solution together with operating under optimized process conditions provided by a phase diagram constructed for the polymer solution. The separation of polymer from unreacted monomers and solvent in the polymer solution is carried out by raising the temperature of the polymer solution as reactor effluent flowing through the heat exchanger. Then, subsequently and by reducing pressure of the heat exchanger effluent, the polymer solution separates into two liquid phases.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: August 17, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Brian R. Greenhalgh, Ronnie D. Bryant, Allison C. Buenemann, Benjamin C. Duff, Philip M. Duvall, Joseph A. Moebus
  • Publication number: 20200370849
    Abstract: Methods of online cleaning of heat exchangers at elevated temperatures are provided. Cleaning of the heat exchanger is achieved through an increasing heat exchanger effluent temperature of a polymer solution together with operating under optimized process conditions provided by a phase diagram constructed for the polymer solution. The separation of polymer from unreacted monomers and solvent in the polymer solution is carried out by raising the temperature of the polymer solution as reactor effluent flowing through the heat exchanger. Then, subsequently and by reducing pressure of the heat exchanger effluent, the polymer solution separates into two liquid phases.
    Type: Application
    Filed: October 17, 2018
    Publication date: November 26, 2020
    Inventors: Brian R. Greenhalgh, Ronnie D. Bryant, Allison C. Buenemann, Benjamin C. Duff, Philip M. Duvall, Joseph A. Moebus
  • Publication number: 20200291149
    Abstract: A process for producing polyethylene polymers including contacting ethylene and at least one C3 to C8 alpha-olefin comonomer with a polymerization catalyst on a particulate support in a fluidized bed polymerization reactor under conditions effective to polymerize at least part of the ethylene and comonomer and produce the polyethylene polymers, wherein the support has a d10 particle size as measured by laser diffraction of at least 18 microns, is provided.
    Type: Application
    Filed: February 7, 2018
    Publication date: September 17, 2020
    Inventors: Corrine L. Brandl, William A. Lamberti, Charles R. Buhler, Judson S. Clements, Harry W. Deckman, Joseph Moebus, Marc L. DeChellis
  • Publication number: 20200172715
    Abstract: This invention relates to blend, and films thereof, comprising: 1) semicrystalline cyclic olefin copolymer comprising less than 15 wt % of a C5-C40 cyclic olefin comonomer and greater than 85 wt % of a C2-C40 linear and/or branched olefin monomer content having a density of about 0.92 g/cm3 to about 0.94 g/cm3, modulus less than 20-80 kpsi, an elongation at break of 150-500%, and a glass transition temperatures less than 38° C.; 2) an amorphous cyclic olefin copolymer comprising more than 25 wt % of a C5-C40 cyclic olefin comonomer and less than 75 wt % of a C2-C40 linear and/or branched olefin monomer having a density greater than 1.0 g/cm3, a modulus of 260-380 kpsi, an elongation at break of <4%, and a glass transition temperature of 54 to 138° C.; and 3) a semicrystalline olefin copolymer comprising C2-C40 monomers having a density of about 0.90 g/cm3 to about 0.96 g/cm3, a modulus less than 150 kpsi, an elongation at break of greater than 400%, and a glass transition temperatures less than ?32° C.
    Type: Application
    Filed: November 22, 2019
    Publication date: June 4, 2020
    Inventors: Nino Ruocco, David M. Fiscus, Summer J. Bernhardt, Bethany M. Welke, Joseph A. Throckmorton, Joseph A. Moebus, Tamara L. Blanton, Kimari T. M. Slaughter